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NOTATI ON

Svmbols

Radius of cylinder in the far field boundary condition.

A Coefficient matrix in Reynolds stress model; constant in
inner eddy; viscosity relaxation factor; cross-secttlr ara

for two-dimensional contour integrals; and coeffici-,nt

matrix for finite difference equations.

Ak The kth amplification factor at a line in the coordinat

attraction technique.

+
A Laminar sublayer relaxation distance.

AI,A2),-% ,  Constants occurring in the surface point distrilbutior.

method.

ALFA Modified grid transformation coefficient k/-

) Column matrix of "constants" in finite difference equa-

tions expression.

Body force per unit mass.

B Constant in the inner eddy viscosity relaxation fact,r;
and coefficient of p., denoting a combination of grid
transformation quantliies in Equation K.4.

BETiA Modified grid transformation coefficient - 2

c Airfoil chord.

c],c., The x and v components of unit outward normal vector

from the body surface.

CbCf Contours which define the body surface and far field
boundary.

C Coefficients in Blasius' series.n

CC Contours which define the cut in the phvsical plan-.

Cfx,Cfv The x and v components of the force coefficients.

C~p Counterclockwise moment coefficient about point (x
p p

D Flow field dilatatio, or divergence.

DL Laminar sublayer damping factor.

DI f , Combinations of grid transformation quantities dcfinJ

by Equations A.4 and A.S.

i x,



D( r]Coordinate attraction damping factor.

F Convergence error criteria.

f Inner eddy viscosity relaxation factor; an- maxiru.m ,7
airfoil thickness as a fraction of the chord.

f Force per unit lengthi of span exerted I,- the flu>.

on the airfoil.

f(:) Blasius' series solution.

f(E,') General function in the computational plan,.

FIF. The x and v components of a general vector
' Tfunction (y,

F Force e::erted by thL- fluid on a MI

F(s) Airfoi thickness funct ion.

F(x,v,t) General vector function.

g(, ) General function in the computational plane.

C An empirical constant in the model for tie craJ >..4

diffusion term.

GA>2L_" Nodified grid transformation coefficient -/,.

HI2 Local shape factor fri

H( Q Difference function used in the coordlnatU

attraction method given by Ecquaticn Ci.

i Complex number.

i Unit vector in the x coordinate directi,on.

I Numerical index for the ith l location.

IC1, IVl Numerical upwind difference designators for i-1.

IC2, IV_ Numerical upwind difference designators f r 1-2.

Pl1A.. Numerical designator for the maxin7i- nu bur of
l ines.

j 'n it vector in the v coordinate dir ct io,.

.1 Jacobian of the grid transforration: and n11:7 ri ,:1 ij ::

for the jth b l0at ion.



Svmbol

JCI, JVI Numerical upwind difference designators for j-l.

JC2, JV2 Numerical upwind difference designators for j-2.

JMAX Numerical designator for the maximum number of - lines.

k Turbulent kinetic energy; and summation index.

k Unit vector in the direction perpendicular to the x-y plane.

k l,,k Inner, outer, and far wake parameters in the turbulence

eddy viscosity model.

kli,k The initial and final values for the parameter kI in the
li, if 1

inner eddy viscosity relaxation factcr.

K(C) Number of points specified in the boundary layer usin.- the

coordinate attraction method.

L Turbulence length scale; and a characteristic length in

the contour integral force calculation methcd.

L Length of the calculated laminar separation bubble.
B

M Pressure gradient parameter - Re due /ds.

n Summation index; designates the nth time step; and a
normal coordinate direction.

n Unit vector in the n coordinate direction; and a unit
outward normal vector for a closed contour.

nl,n 2  The x and y components of the unit outward normal vector
of the body surface.

N The sum of the laminar and turbulent viscosity coefficients

in a rate equation approach to turbulence.

N Specified constant or function in a model for the turbulent

gradient diffusion term.

p Fluid static pressure variable.

p Current value of the fluid static pressure obtained from

the finite difference equation.

PU,r) Attraction function for f lines.

q Turbulence velocity scale defined by (uu)

Q Coefficient of u.. denoting a combination of grid trans-

formation quantities used in Equation E.2.
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Symbol

Qk Velocity characteristic of large eddy motions in a model
for the turbulent gradient diffusion term.

Q(U,!) Attraction function for , lines.

r Constructive grid parameter; and radius in the far field

boundary condition model.

r Position vector relative to origin in the physical plane.

R Region in the physical plane.

R Vector representation for the convective and viscous terms

in the momentum equation.

R(r) Radial stretching function in the constructive grid metho2.

Re Freestream Reynolds number Uc/.

Re Turbulent Reynolds number defined by Equation 37.
t

Re2 * Reynolds number based on the local boundary layer dis-
placement thickness and defined as u e

Re- Reynolds number based on the local boundary laver momentum
thickness and defined as ul!.

RHS Time dependent and nonlinear terms in the Poisson pressure

equation.

s Arclength or surface tangent coordinate; and generalized

airfoil chord direction variable.

sd  Delay distance in the inner eddy viscosity relaxation
factor.

s Relaxation distance in the inner eddy viscosity relaxationr
factor.

s< rGeneral contour which encloses a two-dimensional body.

s ( ) Function which specifies the rate of change of arclength
with T, at the body surface.

Sb  General body contour in the contour integral method.

sgn Sign function.

t Constructive grid parameter; time variable; and the maximum

airfoil thickness.

T Characteristic time period c/U .

T Traction stress tensor.
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SN-mbol

u Variable which denotes the local x component of flow field
velocity.

u* Current value of the u component of velocity obtained from
the finite difference equation.

u Tangential field velocity compocient relativ, to the. bod:
surface tangential direction.

L Column matrix representation of the variables at the prid
point locations for the system of finite difference equa-
tions.

U ... Magnitude of the freestream velocity.

UC Quantity which is proportional to the component of th,
local fluid velocity in the direction.

UV Combination of grid transformation coefficients -/2.1- .

X,tUY The derivative of the local u velocity with respect to
x and v evaluated in the computational plane.

v Variable which denotes the local v component of the flow
field velocity.

v* Current value of the v velocity component obtained from:
the finite difference equation.

v Normal field velocity component relative to th. surface
normal direction.

V Control volume.

VkVk The kth velocity component in indicial notation.

VC Quantity which is proportional to the component of the
local fluid velocity in the r direction.

VV Combination of grid transformation coefficients -12.

VX, VY The derivative of the local v velocity component with
respect to x and y evaluated in the computational planc.

w Function which gives the maximum velocity defect ir the
0 wake at each location downstream.

W Nondimensional complex valued velocity u-iv.

g Complex valued velocity 1' (u-iv).

xiii



Symbol

WL1  Non-interacting length in the near wake measured from
the trailing edge of the airfoil.

WL 2  Turbulent interaction length in the near wake measured
from the trailing edge of the airfoil.

WLav Average value of WL1 and 1L2 .

x Coordinate in the physical plane defining the airfoil
chord axis; and a local tangential coordinate in the
boundary layer turbulence model.

xk The kth coordinate in indicial notation.

xL  Turbulent transition length measured along the body sur-
XL face.

x The x coordinate of a location in the physical plane
P about which a moment is computed; and a new x coordinate

location obtained by the interpolation of adjacent
grid lines.

xR The x coordinate which locates the position of the shear
layer reattachment which forms the bubble in the numerical
solution.

x tThe x coordinate which locates the start of transition to
turbulence on the upper airfoil surface in the numerical
solution.

" T  The x coordinate which locates where fully turbulent flow
first occurs downstream of the leading edge on the upper

airfoil surface in the numerical solution.

XETA Modified grid transformation metric x /2J.

XXI Modified grid transformation metric xJ2.

y Coordinate in the physical plane normal to the airfoil
chord; a local normal coordinate in the boundary layer
turbulence model.

Yk Computed location of the kth point within the boundary
layer for equal velocity increments in the coordinalt

attraction method.

y The v coordinate of a location in the physical plan, about
which a moment is computed; a new v coordinate location
obtained by the interpolation of adjacent grid lines.

yt (x) Airfoil thickness function for NACA four digit airfoil
sections.

x iv



Symb o

YETA Modified grid transformation metric yr/2J.

YXI Mocified grid transformation metric yj/21.

z Input axis variable for calculating x coordinates of the
final distributed surface points.

Z Nondimensional complex variable x+iy in the far field

boundary condition model.

Complex variable c(x+iy) in the far field boundary con-
dition model.

~Geometric angle of attack; and a grid transformation
2

coefficient x + y

a L Geometric angle of attack.

The value f'' (0) in the Blasius' series.

Grid transformation coefficient x, r+ Y ,

y Grid transformation coefficient x2r + y ; and the
intermittency factor defined in Equation 63.

Clockwise circulation around a body.

7(x) Turbulent transition factor function.

Local boundary layer thickness.

Local wake half width.
w

Local displacement thickness defined by Equation 64.

iKronecker Delta.

Input displacement in last two y positions at the outer

boundary in the coordinate line attraction method.

Dissipation rate of turbulent energy.

Inner layer eddy viscosity.

E M Turbulent eddy viscosity.

C Outer layer eddy viscosity.
0

C Wake value of the eddy viscosity.
w

C ic Inner layer eddy viscosity for comparison in liritin

technique.

CFar wake eddy viscosity value.
ow

xv



Svmbo I

Coordinate in the computational plane which is used
to define the body surface.

Tl k Summation parameter defined as (k-1)''

-; pA selected contour integral path around the hd:.P

Local momentum thickness; and the angular coordinat, I
in complex polar variables.

Function which specifies the angle that the ipcoming
I lines make with the body surface coordinate.

Transition distance defined as the distance required to
vary 7 (x) from 1/4 to 3/4.

Turbulent reattachment criteria defined as ( /u ) du /d

Dynamic viscosity coefficient.

'D Potential doublet strength.

Kinematic viscosity /.

Coordinate in the computational plane which emanates from
the body surface grid points and is orthogonal to - inthe computational plane. ii

Ratio of circumference to diameter of a circle.

Fluid density.

Similarity parameter in Blasius' s,ries of Equation If,;
and a grid transformation co fficient defined , ti }
A. 7.

C. Ininer and outer control volume surface s

T Grid transformation coefficient defined b, F,-;uation A..

. Element of the viscous stress tensor.

tij Element of the turbulent stress tensor.

Tij Element of the total stress tensor, +

*d Transon ic small disturbance potent ial doub 1t t fu!', t ion.

Transonic small distur~ance potent ja ' rx . /

Acceleration parameter for pressure ,ivi-
EVuatioI 4'i dufined as 2 T-/( +

*r v,'i- id >:t rcat fWu.'t iOn

xA



Svmbol1

Magnitude of the local flow field vorticity, curl v; and
a local acceleration parameter.

Acceleration parameter for the field pressure finite
P difference equations.

p11 Acceleration parameter for the surface pressure iteration.

Acceleration parameter for the u and v velocity component
uv finite difference equations.

Subscript

b Denotes a location on the body surface.

e Denotes a location at the edge of the boundary layer or
wake.

f Denotes a location on the computational far field boundary.

i Denotes the T coordinate location in the computational
plane for finite difference equations; and an indicial
notation index in differential equations.

Denotes the r, coordinate location in the computational
plane for finite difference equations; and an indicial
notation index in differential equations.

k A component index in indicial notation.

max,min Denote the maximum and minimum values of a variable.

S Denotes a value at the laminar separation point which
defines the beginning of the bubble.

w Denotes a value in the wake region.

x,xx Denote differentiation with respect to x.

y,vy Denote differentiation with respect to .

r;,r,, Denote differentiation with respcct to

Denote differentiation with respLct to

Denotct. a vector quantity.

Superscrip t

* Denotes a quantity in the transformed plinc.

Dinot W, a turbulence, t iith avri,-td quaint it',.
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Superscript

Denotes a turbulent fluctuating quantity.

Denotes a temporary nondimensional variable definition.

s Iteration number in the successive-over-relaxation
iteration procedure.

1Pertaining to T contours.

tPertaining to contours.

Prefix

d Derivative operator.

D Substantial derivative operator (D-/Dt =-/3t + v--).

A Increment.

Summation.

V Del-operator defined as i -x + j7-.

Partial derivative operator.
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ABSTRACT

Nimerical solutions are obtained for two-dimensional incompressible

turbulent viscous flow over airfoils of arbitrary geometry. An algebraic

eddy viscosity turbulence model based on Prandtl's mixing length theory

is modified for separated adverse pressure gradient flows. Finite dif-

ference methods for solving the inviscid stream function equation and the

incompressible laminar Navier-Stokes equations are used. A finite difference

method for solving the Reynolds averaged incompressible turbulent two-

dimensional Navier-Stokes equations is employed.

The inviscid stream function equation and the Navier-Stokes equationq

are transformed using a curvilinear transformation. A body-fitted coor-

dinate system with a constant coordinate line defining the airfoil section

surface is transformed to a rectangular coordinate system in the trans-

formed or computational plane. An elliptic partial differential Poisson

equation for each coordinate is used to generate the coordinate system in

the physical plane for arbitrary airfoils.

The two-dimensional time dependent Reynolds averaged incompressible

Navier-Stokes equations in the primitive variables of velocity and

pressure and a Poisson pressure equation are numerically solved. Turbu-

lence is modelled with an adverse pressure gradient eddy viscosity tech-

nique. An implicit finite difference method is used to solve the set of

transformed partial differential equations. The system of linearized

simultaneous difference equations, at each time step, is solved using

successive-over-relaxation iteration. Far field boundary conditions are

xix



examined. Solutions for a NACA 0012 airfoil at angles of attack varying

from five to 11.5 degrees at a chord Reynolds number of 170,000 are

obtained. Velocity profiles near the airfoil surface and surface pres-

sure distributions are presented and compared with experimental data.

Lift and drag coefficients agree well with experimental values. The

computed lift coefficients near stall are within 57 of the experimental

measurements, and the numerical drag coefficients agree within ten drag

counts in the region of maximum lift to drag ratio. The short laminar

separation bubble near the suction pressure peak is numerically determined.

The variation of bubble length and turbulent transition length with angle of

attack are similar to experimental trends.

xx



SECTION I

I NTRO1UCTI 0X

Much effort has been expended by the aeronautical com-'ujinitv in 'I-

termining the aerodynamic characteristics of airfoils. Linear

are extensively used in design work for studying configurations at sr., N
angles of attack with negligible flow separation. -xperimental wind

tunnel investigations are used to determine the characteristics near stall

where separation phenomena become important. Recent development.; in

numerical techniques have stimulated research on another approach, na',e Iv

the numerical solution of the Navier-Stokes equations. Thes, equatio-,-

model the viscous effects which contribute to airfoil stall. For this

reason, numerical Navier-Stokes methods offer the possibility of determin-

ing the aerodyramic characteristics for airfoils experiencing stall.

Numerical methods can also complement experimental methods by efficiently

extending the range of parameters under investigation. Furthermorc,

numerical methods eliminate model support interference and wall interfrenc

effects found in wind tunnel testing.

The purpose of this investigation is to develop a numerical Navir-

Stokes method that will accurately determine the aerodynanic charaterist i 's

of incompressible turbulent viscous flow over two-dimensional airfoi Is nALr

stal .

The development of a numerical method for turbulent flow rc rs

a suitable technique for distributing points throughout the f],ov, it Id

and a model which describes the behavior of turbulence within , i

regions of the flow field. A survey of nimerikcal grid generat in, tk,, .i2 2

and availab l turbulence models is presented. The quantit': o liit tr.i:,

concerned with tht Xivier-Stokes equations is extcns ive. Tl, ,



summarv of the literature, which describes formulations of the N'A%-'1r

Stokes equat ions and their numerical solving techniques app1 itd to f lows

over airfoils, is given. The research obj ectives for this work are-

then discussed, and a summary of the remaining sections is preSenltedj

Body--fitted curvilinear coordinate syst ems greatlyv enhance thc

application of numerical methods to pract ical boundary value rbl:>

involving part ial diffe.rential equations. The representation of a

boundary surface as a coordinate line reduce-, the difficulties- associatedl

with numericallv spec ifyin g boundary- conditions b\y interpolation ily !inite

differences methods-. In the physical (x,)plane, values for oneco~u

tatlonal coordinate are specified at selected points oin both tlle b)ody

surface and the outer boundary, Constant values for the other co"mpu it iona l

coordinate T are specified oin both the body surface and the ouiter fl o%

boundarv. The transformed computational ( ,)plane then becomeIs A

rectangular region with an orthogonal grid. Winsl Iow (I) and! ('hn I

introduced the concept for two-dimnensional revgion-, interior to a cie> I~

boundary. Their transformed coordinates are solutions, of Laplace's

e'quat ion in the physical plane and define a trianc,-ular mnesh s%-stoli n

the phnysical plane. Amsden and Hirt (3) took th1e phy.Sical coordina"te'S

to be solut ions of a modifijed L.aplace's equat ion in the t rans or:'xec

Pl1ane.

Thompson, Thamies, and Mati - ,()generalized the" met ho 10or t~i

automat ic generat ioA of body-f it ted coordma ti-s for any two-d imens oi I,

mulIt i-connected region. ThI ey a 1 so i n t rodn c Ced t Ie us CISO 0f f orc in :n ; o!CnL > !

in a Poisson equat ion which prov ides, mes!.h cont rol in rclcjon> withi lare,,

grad Lent s. Hold e (7) deve loped in anitomna ted i1r id line at trac tion 7ik t!!L

base;d en bou1ndar' I a\-or theory wvi ic de tem i ne s the coL f f iccit - lin t



forcing. func tion. Hiodge assumed a Bas ius boundlir' Iar profiL an

distributeid his grid points at approximat, e 1 equal velocitv increi:ne,;t

in the boundary laver. Stecer and Sorenson (S) introduced auxiliar

conditions for the forcing functions which provide an- l and dist ,nce

control at the inner boundary surIac,. :,eangl with which n ii:

intersects the body surface is specified by a functio" , anu t :c

rate of change of arclength with ' on a line at th, body surfacL i,-

prescribed vI s (s Sorenson (9) later imposed si-ilar conTditio:,, on

an outer computational boundary. These au:,iliarv condit ions ar, use,! to

solve for coefficients in the chosen exponential forcin: fuiictic . '.,

geometric conditions hold exactly onlyv in the Iimit as . approacne< :: r.

Sorenson reported that numerical instabilities occur for large CI

in the coefficients during successive iterations and for )onnd r n V '.

sharp corners. Lie implemented a limit function which dan:ped the ch-n, ,

the value for each coefficient over one iteration; and at sharp corners h,

computed averace values of each coefficient from, data at the neLicvrin.

boundary points. ,ast in and Thompson (10) Ihave also e-tendd t) ol i,

body-fitted coordinate generation technique to three dimensions for si::,;-

geometries.

Some other specific grid generation techniques which use, propirtic,-; of

elliptic differential equations have also been reported. YMevdcr t11)

constructed an orthogonal curvilinear coordinate syste7: 1" usin: lct -c

field theory. He solved the potential equation twice with diferent- ' >

of mixed Dirichlet and Neumann boundary conditions for the electric pot inttin 1

and electric force lines, respectively. Thes solutions. howe.er, wire

obtained in the physical plane using interpolation and becamer thV cu ri: r

coordinate line> in the physical plane.. Thi ceordin ite iitrics w,-cr t% h :-

used to formulate a finite differce t(;uation wU cD was a.: C ]'t i. 1 - tA



plysical plane. Conformal mapping techniques which vth

Garick (12) traT> : rmation have been examined by Ifve. (13,. H introduced

the use of fast Fc irier transform methods and developed a new class of

transformations wl irT, maps the flow field of a two-elv-.,nt airfoil onto

the recion between two concentric circles. Conformal techniques are not

capable of being extended to three-dimensional geometries (-). Neither

of these approaches offers a convenient means for mesh control in regions

of large flow gradients.

R'ecentlv, a geometric grid gener;,.ti ,n technic ue has, been in troduced 1-:

Cibelin: , Shamoth, and Fiseman (14). Zie technique paramterizes (t) t",

body and outer boundary surfaces and uses a strctc"ing function P.(r) for

mesh attraction along constructed lines perpendicular to the hodv sur-: a

Unit increments for ordered pairs (t,r) generate the corresponding cou:-1ta-

tional plane. Further refinements which provide angle and arclengt,;

variation control at a body surface have subsequently been developed hi

Eiseman (15,16,17).

The search for an accurate and universal turbulence model has paral lted

the development of body-fitted grid genert ion techniques. In princii e,

the X:avier-Stokes equations completely describe the turbulent flnctuatinc

fluid motion. The required mesh resolution, necessary to resolve t!L tur-

bulent eddies with varying length scales, whet translated into c,:

resources presently make this approach unfeasible. M, any quantities of it-

gineering interest in turbulent flows involve a meaT valuc take: over a tin:c

interval. The time interval is sufficiently loa1 to include man" fluctuations

while, small compared with the characteristic time of tmL n tic.. Th.e

':,vier-Stokes equations can then be re-formulated usinc these mt, , fl

a i b1e.) . Th is Y', no Ids averaging procedure int roduce tl,, o .a i t r:"



involving fluctuating quantities. The Reynolds stress components

ulu. are the most common terms of this type. In order to solve the1J

a.eraged form of the Navier-Stokes equations, "turbulence closure" must b.

achieved by suitably modelling these additional terms. This approacl, to

turbulence has led to models which introduce auxiliary relationships ra:yin i

from algebraic equations to several partial differential equation.. Tiiese

models are commonly categorized and are now summarized according to th'.c

number of additional partial differential equations which comprise the model.

The algebraic or zero equation models have their origins in Boussinesc's

(18) eddy viscosity hypothesis and Prandtl's (19) mixing length model. ThV

local turbulent stresses are assumed proportional to the local mean flow

strain rates with the proportionality constant defined as an equivalent

or eddy viscosity. The eddy: viscosity models of Cebeci-Smith (2) Xellor-

Herring (21), and Patankar-Spalding (22) represent this approach. The

boundary layer in each method is divided into an inner near wall layer and

an outer wake layer with separate expressions for the eddy viscosity co-

effici-ent. In the Cebeci-Smith and Patanker-Spalding models the inner mixinc

length varies as a linear function of the normal distance from the wall modi-

fied with a Van Driest (23) laminar sublayer correction. The Cebeci and Yellor

models both base the outer length scale on the displacement thickness while

the Patanker-Spalding model uses the boundary layer thickness directly.

These models have been successfully extended and applied (24) to a wide variety

of boundary layer flow geometries involving compressibility, heat and mass

transfer, and curvature effects. In addition, the mean flow models are

computationally efficient. Launder and Spalding (25) point out, however,

that these models predict a vanishing eddy viscosity where the velocity

gradient is zero and have not been successful for large separated recirculat-

ing flows.

5



The one equation turbulence model introduced by Prandtl (26) is an

extension of the algebraic technique. In this approach the solution of

the partial differential turbulent kinetic energy equation usually provides

a local velocity scale given by q- = u!u. where su:mation is implied.11

The length scale L is prescribed by an algebraic expression as before. Terms

involving fluctuating quantities other than q must still be modelled.

Glushko (27), Mellor and Herring (28), and Wolfshtein (29) model the gradient

diffusion term -((uk p/, ) + u (u' u', )/2) with a gradient of q piven
kk 1 1

as N 1 k(q-/2) where N is a specified constant or function and is
Q k Q

the eddy viscosity. The Reynolds stress is related to the mean flow as

in the algebraic approach except that the eddy viscosity is assumed propor-

tional to qL. Bradshaw, et al (30) model the gradient diffusion tern. with

an expression G qZ Qk where C is an empirical constant or function and Qk

is a velocity characteristic of large eddy motions. They also write the

Reynolds stress directly as a function of q in the iorm T .--A.. q. In
tlj 1]

each model the isotropic dissipation is modelled by a form q7/L. Nee and

Kovasznay (31) use a rate equation for the total viscosity N ='" +

in place of the kinetic energy equation. They formulated expressions for

the generation and dissipation terms involving various constants and

the length scale. Launder and Spalding (25) observe that the one differential

equation models require a moderate increase in computer resources but do

not in general provide more accurate results than the results obtained from

algebraic methods.

Kolmogorov (32) introduced the somewhat more complex type of turbulence

model which uses two partial differential equations. A form of the turbulent

kinetic energy equation provides a local velocity scale. The local length

scale is obtained from a second equation. Ng and Spalding (33) formalized

6



this approach by introducing the energy-length equation derived by

Rotta (34). They also used the Glushko closure model in the turbulent

energy equation. This lass of two equation models is named the k - kL

turbulence model where the eddy viscosity is proportional to k' L. Saffman

(35) has used a transport equation for the mean vorticity - together with

the turbulent kinetic energy. The eddy viscosity becomes proportional to

k/- in this k - class of closure models for turbulence. The local lencth

scale is assumed to be proportional to k/,.. Wilcox and Rubesin (36) havc-

modified this approach for compressible flows and generalized the cnstit-

utive equation. Jones and Launder (37) use a transport equation for th, ratt.

of dissipation of turbulent energy - along with the turbulent kinetic

energy equation. Glushko type closure models are assumed for the terms in-

volving fluctuating quantities in both equations. This k - : class of two

equation models has a local length scale proportional to k 3/2/ with the

eddy viscosity proportional to k /£. The two equation models have been

applied to various loundary layer and free shear layer flows with a variety

of constants and closure models. The two equation models require signifi-

cant increases in computational resources and have not led to a model of

universal applicability (24,25).

The search for a more general turbulence model has led to the use of

the transport equations for the Reynolds stresses. In this approach the eddy

viscosity concept is discarded. Closure models, however, are still requir~d

for the terms containing fluctuating quantities other than the Reynolds

stresses. Donaldson (38) introdu. closure models which express the

fluctuating terms as functions of the Reynolds stress and chosen length

scales. Hanjalic and Launder (39) introduce closure models which use

the Reynolds stress and retain the equations for turbulent kinetic energy

7
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k and turbulent dissipation, Only cases with the simplified two-

demensional boundary layer approximations have been investigated. The

extensive computational resources and initial state of development of these

models preclude this type of approach from practical consideration as a

turbulence model for a complex flow field computation.

Theoretical turlilence models of further complexity have appeared.

Kolovandin and Votutin (40) introduced a statistical theory where additional

equations are obtained for other correlations of the fluctuating quantities.

Ferziger (41) took a meteorological viewpoint of turbulent flows by numeri-

cally simulating large scale eddies while modeling the small scale structures

with an eddy viscosity technique. This approach is a first step toward

numerically solving a turbulent flow field with the instantaneous equations

of notion.

The review of available turbulence models provides the basis for select-

ing a suitable approach for use in the numerical solution. The algebraic

and the two equation eddy viscosity models appear to be realistic choices.

As previously reported (25), the one equation techniques yield unimproved

results compared with algebraic methods and at additional cost in computer

resources. The two equation methods require the solution of additional partial

differential equations. In these methods, terms involving fluctuating quanti-

ties, except the Reynolds stresses, must still be modelled using additional

coefficients. For these reasons, the simpler algebraic eddy viscosity technique,

which requires considerably less computer resources, is employed. If the

physical phenomena associated with separated adverse pressure gradient flows

can be included in the turbulence model, then the accurate calculation of the

aerodynamic characteristics may be accomplished with an algebraic technique.

A survey of the previous research involving numerical solutions of

the Navier-Stokes equations for flow over airfoils establishes the pre-

8



diction level of computational methods and also reviews the num.rical

algorithms. The grid generation technique and turbulence model employed,

when applicable, are also included.

Early numerical solutions of the Navier-Stokes equations for flow over

airfoils ised the vorticity-stream function formulation with an automated

grid generation technique (4). Walker (42) applied the method to the laminar

flow over a flat plate and compared the numerical solution with Blasius'

(43) solution. Thames (44) used body-fitted coordinates with the vorticitv-

stream function approach and solved the Navier-Stokes equations for various

bodies in doubly connected regions. He obtained solutions for the flow over

airfoils at chord Reynolds numbers less than 10 . Problems mainly attributed

to wall vorticity developed for solutions of airfoils at angle of attack.

Mehta and Lavan (45) also used a voticity-stream function method

in studying the laminar starting vortex and separation bubbles for impul-

sively started incompressible laminar flow over a Joukowski airfoil at

4
Reynolds numbers less than 10 . They used three point backward time

differences and centered spatial differences. The computational grid

was obtained through a conformal transformation followed by a radial

stretching transformation.

Reddy and Thompson (46) applied an integro-differential, vorticit.-

velocity field method for the solution of incompressible flow in doubly

connected regions. Backward time, centered spatial (BICS) differences

were applied to the Navier-Stokes equations. The difference equations

were solved using successive-over-relaxation (SOR) iteration. 'Pce

also employed the coordinate mesh attraction technique with a time dep ndnt

expanding mesh system. Symmetric airfoils at zero angle of attack

with a Reynolds number less than 106 were considered. At the li Ur

Reynolds numbers, the calculation of surface vorticitv required( a ]ar;'. Mn:n-

9



her of grid points on the surface which greatly increased th. rt,:,: rt

computer time. A steady state solution was not obtainet.&

The vorticity-velocity field formulation has been ippli d 0v Sanxr

and Wu (47) to the case of incompressible laminar flow about an ol illatin-

airfoil. They used a 12' thick Jeukowski airfoil at a Leu,'n ld.(!. nu: ,( r o

1000. Triangular finite elements were constructed near tie airfui surface

and a rectangular mesh was used awa: rom the airfoil. A confor:-,al tran-

for,,ation was used to map tie airfoil in tEe physical plane onto a unit circle

in the computational plane. Sankar and Tassa (48) investigated this

probl em wi ti a compressible f low for:-iulat ion of the .avier-S tou;-, . i:u:ti'.

The- use-d a conformal transformation followed 0'. an algebraic radial -tretcnin..

transforn::ation. Tl,e alternating-direction-im-plicit (Arl) finite dif fercnc

met hod of Brilev and ",. onald (49) was used to cotain soluticrr: for .cvuold 

numbers less than 10 and a ',ach number of (.2. In a separate i'eseard.

effort, Sugavana: and Wu (50) attempted to use a two equation k- turbu-

lence modcl with a vorticitv-vtlocitv formulation. A confor:-.al trans-form7a-

tion for a 12 percent thic-. Joukows-i airfoil was u Tcd Thev e::p; r i e! I

difficulties in obtaining a converged solut o1 even f ter eight hour 01

CYBEi- 7- CPl time were expended. Variation, for both lift and drag of the

order of 50 percent occurred.

The use of the primitive variables of vtlocity, and prcssurc f r

incompressible flow was introduced by Harlow and Vt t (-l) in t t

explicit forward time, centered spatial (FTC.S) 2ar-and-(,l (KA'. mt..

They included a Poisson equation for pressure wi, iL i - ol-taintd 1,, ta int

the divergence of the momentum equation. ]- a- cuiuid that the VCe Ok it

d ivergence terms in the momen tar equ;it i on- w r, ri i rd for tt prcs-urt

field calculation. t1irt and Harlow I furt; r d , l, ed t , T. t ,d.

Hodge (53) considered the casI, of i aminir inko:,,i rei-> , \'isa :1 ,

an airfoil at angle of atta l- . III ised i or' ! t U o-p ia, t i

f(



body-fitted grid transformation and applied an implicit BTCS differencint4

method to the Navier-Stokes equations. The system of difference equations

was solved with SOR iteration. Various methods of calculating the pressure

field were investigated. Hodge concluded that the momentum equations should

retain the velocity divergence terms and that a Poisson pressure equatio

should be used to satisfy continuity. Ghia, Hankey, and Hodge (54) applied

a Poisson pressure equation and the primitive variables form of the 'havier-

Stokes equations to study incompressible driven flow in a square cavity

for Reynolds numbers under 1000. They used an alternating-direction-iniplicit

(ADI) finite difference technique for the momentum equations and SCTh iteraition

for the pressure equation. A Neumann boundary condition derived from LO,.

normal component of the momentum equations was employed to compute the wall

pressure.

The Poisson pressure equation has been further examined by Chien

(55) for internal flows. He observed that the calculation of pressure

by direct integration of the momentum equations can be inaccurate when

large velocity variations are present. He found that forms of the

pressure equation were more suitable for computing the pressure field

near boundaries. Recently, Hodge, et al (7) applied an implicit backward

time finite difference method with both upwind and centered spatial

differences to the Navier-Stokes equations in primitive variables form.

A Poisson pressure equation was used to obtain a solution for laminar

5flow over airfoils at angle of attack with a Reynolds number of order 10

The solution contains a large oscillating separated region which gives

approximate trends in lift but very poor agreement with available drag data

(5f,).

Farly numtrical ':avi r-Stokes investigations of turbulent flow ov'r

airfoils considered two-dimensional transonic viscous flow at small an;,Ic.-

]l1



of attack. Deiwert (57) applied MacCormack s explicit method (5 ) with

a 50x38 rectangular based exponentially stretched mesh. He used 20 uni-

formly spaced points to define the upper airfoil surface and imposed the

Neumann boundary layer condition 4p/,n = 0 on the surface. Steger (59)

used the implicit Beam-Warming method (60) with a 71x33 grid obtained fro7

a modified Thompson transformation (4). He calculated the solution on tie

branch cut with a linear extrapolation procedure and evaluated surfact- pros-

sures using the momentum equations for the direction normal to the. surface.

Walitt, et al (61) applied the first order method of Trulio (62) outpl -d wit!

a boundary layer technique used near the airfoil leading edg,. T,e> u

130x68 mesh system but did not capture the full suction pressurL, on tli, u;K')r

surface near the airfoil nose. Each investigation used a Ceb ci-Smith i 3I

type algebraic eddy viscosity model and the Reynolds averaged comprtsi.fl.

Navier-Stokes equations.

Recently, Shamroth and Gibeling (64) used the Brilev-.Ychenalcd

(4) implicit finite difference formulation with a constructiv'e txpt'

81x30 grid system to compute turbulent flow over an airfoil it ar, ar-,..

of attack of 6 degrees and Reynolds number of 106. They first tried

a two equation k-t turbulence model but experienced convergence pro ltcm

near the leading edge and far field flow regions. They reported obtainin,'

large or negative values for the turbulent viscosity in essentiall'v

laminar regions. The turbulent kinetic energy equation with an ala,! rd ',illV

prescribed length scale was then used. Major discrepancies occurrcd for thL

mean pressure distribution solution in the suction peak and trailinu' Ld1, e

regions of the airfoil surface. They also noted that the constructivt,

grid technique caused a crossing of grid lines of the same fa:- ilv for

highly cambered airfoils.

The examination of existing numerical solutions of the Navier-St,4,-
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equations for two-dimensional flow over airfoils reveals Reynolds nurber

and angle of attack restrictions. As a result, numerical Navier-Stokes

methods for the accurate computation of the flow field and resulting

aerodynamic characteristics for an airfoil near stall are unavailable. The

development of such a numerical method for solving incompressible two-dimen-

sional turbulent flow over airfoil sections near stall does, therefore,

constitute a significant contribution in computational aerodynamics. Thc

fulfillment of this research goal requires the formulation of an adenuate'

turbulence model for use in both leading and trailing edge separated rugion.

The far field boundary conditions for incompressible flows r:ust alsc,

examint.d.

The selection of a suital~le nuerical approach for inconnressi.

turbulent flows i- based on several considerations. An implicit teri .

is preferred because of the required small grid spacing ne.ar thl, body sur-

face neccs!.ar': to resolve viscous stresses. Stabilitv criteria of ex:Iiit

methods would imp0,c a small tine step restriction as a result , the .:r1d

sle t, nu7>er ical method should be capabl C of pred iing la-, n ir

for ( vnnld- numbtr - approaching turbulent f low cond it os ML.c rc ion ,c,-

la minar f I o , ri.t'. occur. l! te list of prim it , t vi r I a i S is) roa v : t , d

to tl,re, dimten-ion, and pr(,vides for tht. direct o:,L; '!: i., , th.t prt< > r,

field. 'Ihese criteria art- satisfied b'" an impl iit finite dif Ir -; ;r-

cedLrc I.'ped >. ige ( 5,7) which uisesi. priv. tice cari? It a. . ,-

ovr-re ,i:.:,tion itertin. :,e implicit kit- differ c tv ir ,;

in thi investi!:at i,,.

The r, ,in in,, s t i n. ,f t rt- . ef:ur' dih ... - t9 :, I.,

"T1 e , . in achievir,, the defin d r 'se.!rk . V I ' r

the. ,!.o!-qps l nul: r icall', generaited -od.- it t r .*

' t , o! ;,tt ra ti 1',-, grid A I 'n.( t t t er ,, .,



surface points are also discussed. The governing equations for incom-

pressible two-dimensional turbulent flow in primitive variables are

presented in Section III. Boundary and initial conditions are discussed.

An algebraic eddy viscosity turbulence model formulated for adverse

pressure gradient separated flows is described. An algebraic type of

turbulence model has been chosen because of the previous computational

successes for other turbulent flow problems and the definite computational

efficiency obtained by this approach. The method for evaluatinl forc.,

coefficients exerted on the body by the flow field is then discussed. t

numerical techniques used in obtaining a solutlion are preentd in itL 1.

IV. First, the finite difference method for nuuericallu I eneratxr. t1,

grid is given. The X:avier-Stokes equations are then written in finite.

difference form. The nuerical method used to implement the bounder. .j', a:),

initial conditions is described. The computational procedure for introducing'

turbulence is next discussed. The finite difference and numrical inte-

gration techniques for calculating the force coefficients are the-n ;,r LT,.*-u:

The formal di>-ussioP, of thL nu.erical solution. and comparwi so. w c:.: --

mental data are given in Stection ". Thie conc lus ion. derived fro:-. thi.- re~ or

work an(! recommendations tor future work art ,et forth, in S',ct I
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Partial derivatives arc transformed using the chain rule and inver>e

transformation relations. For a sufficiently diffeicntiaIlle function f

of x and y, the derivatives transform as follows:

= (y, f -y 3. 4

f = (-x f + x f l/j (5)

Higher order derivatives are similarly derived .

The system of elliptic coordinate generating equations is chosen to

ho

+ E = P(, )XX \'\"

XX VV

with the boundary conditions on curve C

= :b<x, =)"b

and on curve (C

(::v y*=) -(f'ff

where (, v) and (:: v are prescribed functions and and ar,

prescribed constants. The other two sides CI and C, in the rectangular

region are2 transformed fron. the branch cut C1 - C. The functions x(

and ( :, ') and all derivat ives are continuous across this cut. These

boundary conditions insure that the body and the far field boundaries at

defineid by constant lines. The generalized functions4 P and ) art lt i Li.

in attractinc the coordinate lines in various ref'ions.

The rectancular grid s:;stm in tle transformed planc i,:sd f r t h.

compt] at i on . The mesh generating system, h'quations 6 a an' ( i t rl-

formed to tht computational plane and becomtes
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unct to n o in thiiis case, the second and hiigh( r erd,,r dearivtiveb IL

respc t to become zero the reV,, mTininmiziug tlie truncat ioni errwr of a i n

thie trans i err wil plane

H)L! L~ (71 has devel:oped a technique which approxiimate.'-: satisfie> th

above, c riter ion. Terequired point distribution on a line. is determ-in-f

u Sz loio> ' loat plate boundary flae r solut ion. Thke sintlacit:- series'

V~1 )l 3 n '1+2(I

n=O (n + 2<

w:i r< hesmior variable u/ 7U i S t hee t-d (' L dry

l aer v cloc it v anr)d is the kinemai C misito hiffrn L o4t in P. .

16 with rsctto gives an expression for the tangential vulocito a in

the boundary loser
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C,, 11, and, C 375. Also, from Equation 17 the factor is r elIate,
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u 0
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The second part of the boundary layer grid line attraction technique

involves calculating values of Ak and D which when used in ) ive th,

desired r, line spacing. Near the body surface, the r transformation

equation, Equation 6b, can be written

(n ) Q( , '-) (20)
Y'b

where variations with respect to x are neglected. If the expression for

the forcing function Q in Equation 15 is substituted into Equation 20,

then Equation 20 can be integrated with respect to I to obtain

K

() = 2(A /m) expj-D Hi(, ) + H(sgn(k - ') 0.)
dy k1l k k

[1 - exp(-' - 'k )]  
(21)

where the difference function H and sgn function are defined as follows

0 if r< 'k
H (r, rk ) =

S k -; if r > r,
k k

1 if - > 0

sgn(r k - r) 
k

-1 if k < 0

Now evaluate the expression for (d'/dy)- , Equation 21, at =0 and

r,= r - ,x which gives the approximate expressions written in Equations

22 and 23, respectively.

2 Kt( ) = - ,. A (22)
'dy *= D k=l k,
2 K

d 1( - A )  exp[-D,- - - r (23)

)A
dy max D k= k max K

The derivative in Equation 22 can be evaluated using the v values obtained

previously. The derivative in Equation 23 can be specified by choosing an
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L based on the placement of the outer boundary. Then Equations 22max

and 23 can be combined to give the following equation for the damping

factor D:

D = In 2( max - / max - (24)
dv d0 d24)

max

With the damping factor D known, the analytic expression (Equation 21)

can be evaluated on each interval of successive y values obtained from

the Blasius solution along with the last -'1 interval near the outer boun-

dary. This procedure gives a system of K equations for the K unknowns

which are then solved. Therefore, values for the amplification factors

and damping factor are obtained at each § line which are used to compute

a body fitted grid system.

C. Body Surface Point Distribution

The body surface can be defined by either a given set of points or

by an analytical expression. The body surface grid points can then be

determined by either interpolation or evaluation of the analytical expres-

sion.

The NACA 0012 airfoil section is used in this investigation. This

airfoil has been used in several investigations (65) and is an AGARD (66)

designated test airfoil section. The NACA four digit series airfoils

have an analytic description of the body surface given by (67)

S(x) = 5t-0.2969x' - 0.126x - 0.3516x- + 0.2843x - 0.1015x (25)-t

where x is the distance along the chord (nondimensionalized by chord), v

is the upper surface ordinate, and t is the thickness given as a fraction

of the chord. For the NACA 0012 airfoil, t = 0.12. The thickness function

given by Equation 25 does not close the body at the trailing edge (x=]).
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A circular arc is used to close the body. The arc is constructed to have

a center on the chord line, to have points of tangency with the upper and

lower airfoil surfaces near x = 0.99, and to intersect the chord line at

x = 1.0.

The distribution of grid points on the airfoil surface is based on

both resolving streamwise flow field gradients and defining the surface

curvature. These criteria require the clustering of points in the nose

and trailing edge regions of the airfoil. The following analytic trans-

formation is used to obtain the desired clustered distribution of .i

abscissa values

A3
-Al A

tanh( z  ) - tanh(- -)
xA=2 ... (2'

A1

where z represents the input set of equally incremented values (C) z < 1),

x represents the clustered set of abscissae (0 < x < 1), and Al, A2, and A3

are arbitrary constants. The constant Al determines the center of the

hyperbolic function and is used to cluster points toward one end. The con-

stant A2 varies the slope of the function at the center and thus deterrines

the distribution near mid chord. The exponent A3 can also affect the

clustering of points at the ends. If A3 > 1, more points occur near x = 0;

while if A3 < 1, points are clustered more at x 1.

... ... . .. .. . . " ' ', . . .. .. .. . . .. . . ... .. ... . .... .. .. .. . .. 'l.. ..2 1



SECTION III

GOVERNING EQUATI ONS

The time dependent incompressible viscous Navier-Stokes eqations

for two-dimensional flows are presented. The primitive variables of fluid

velocity and pressure are used. The Reynolds averaged Navier-Stokes equa-

tions are obtained. Boundary and initial conditions are given. A modified

turbulence mod,,' based on Prandtl's mixing length theory is described which

expresses the Reynolds stresses in terms of mean flow quantities for

separated adverse pressure gradient flows. An expression for the force

exerted by the flow field on the body is derived. The equations and

boundary conditions are transformed by the curvilinear transformation

discussed in Section II and written in the computational plane.

A. Basic Equations of Motion

The time dependent incompressible Xavier-Stokes equations, which

describe conservation of linear momentum, in orthoncrmal indicial noLation

are given by
7V

t + (VV ):-i p +  (27)

where - is the fluid density, p is the fluid static pressure, V. are the
i

components of fluid velocity, and T.. is the viscous stress tensor. The

subscript i = 1 corresponds to the x dirction and i = 2 to the v direction.

Conservation of mass for an incompressible flow is given by

K. V. = 0 (28)
3 J

Turbulent flow is introduced by assuming that the flow quantities can

be described in terms of mean and fluctuating quantities in the form

V p = T +V.+

i i i iia2i2 -ji



where the bar (-) indicates a mean quantity and the prime (') indicates a

fluctuating quantity. In this form, a time average of a fluctuating

quantity is assumed to be zero. Substitute these expressions into Equa-

tions 27 and 28 and time average each equation to obtain the Reynolds

averaged Navier-Stokes equations for two-dimensional incompressible

turbulent flow given below.

"___ + j(v. V.): -i p. + j i V V (29)
. j 1 f ji~

V. = 0 (BC)

I I

The term V. V. is known as the turbulent Reynolds stress. The inco:m-3 1

pressible form of the constitutive equation which relates the stress as

a function of the rate of strain is now introduced as

2' i 3

where .. is the dynamic viscosity coefficient. The turbulent Reynolds stress

is similarly modelled with an algebraic eddy viscosity approach based on

Prandtl's mixing length theory. The corresponding expression is

-vV. Vi  j V. + D V.) (32)

where M is the turbulent eddy viscosity. In this way, the additional
I I

unknown -{.V. V. is expressed in terms of the mean flow variables. This

turbulence closure requires, however, an expression for the eddy; viscosity.

Models for the eddy viscosity are examined in Section III C.

The expressions for the viscous laminar and turbulent stresses,

Equations 31 and 32, are substituted into Equation 29 to obtain the

simplified turbulent incompressible Navier-Stokes equations

i 1 33)-+ ?j(V. Vi) = - - B P + <..' V. + ". " (33)It 2 i p- 3] 1 i i j
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The following nondimensional variables are introdu, td:

- ×.- -. r -t t '

1 C 1 -(

where c is the airfoil chord, C is the fruestrea., velocit,', and pj is tl.e

freestream static pressiire. Substituting these nondimensional aciai, es into

Equations 30 and 33, with the time average and nondimensional smbols under-

stood, gives the following set of Equations

-; = V\. = 0 (35)

-.Vi + ,1 (VV 9 1  P + + ()jYV +)
tt

where D is the divergence of velocity and Re is the turbulent Reynolds

number. The turbulent Reynolds number is defined as

Re = (37)

1 +--"

where Re = U-c/, the Reynolds number.

Another simplification would be to apply Equation 35 in Equation 3t,.

The divergence D is contained in both the convective and viscous ter:m.

Although analytically correct, the velocity divergence is in gcnrail not

identically zero in a numerical result. The approach us,-d by llodce' (7 3)

and developed by Harlow and Welch (51) is to keep the divergentc !' in tle

convective term as a correction term. This approach is ut.d hcrL s , tS,,c t

the viscous divergence term is set equal tn zero in ECuation Y). Sinc-( th

convective terT, is important throughout the flow field w.ilu thc viscu,'i

term is important only near the airfoil surface, it lppLar, r -),'! -It, to

drop the viscous divergence ter. and keep the convectiv. div. r'u .
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as a correction term. Thus, the appropriate set of equations becomes

__+ ?(_.p + 1 P (38)2t (Vj i) p + (3j .3.)
t 

1

D = .V. (39)

The calculation of pressure in the primitive variables formulation

must be carefully handled. The pressure does not appear in the continuity

equation nor does a time derivative of pressure occur. Two approaches

have been extensively used to overcome this difficulty. Both techniques

compute the pressure by utilizing the velocity divergence I) as a correction

factor. The calculated pressure is made to satisfy continuity. The first

method, introduced by Chorin (68), computes pressure using an iteration

procedure with D as the correcting term. The expression is

(s+l) (s) (A:D

where s denotes the iteration number and ' is an acceleration parameter

which can be either a constant or can be related to a successive-over-

relaxation (SOR) solution of a Poisson equation for pressure as shown by

Hodge (53) . The second method uses a Poisson equation for pressurL derivLd

from the divergence of the momentum equation expressed in Equation 3S.

The form of the equation is shown in Equation 41.

Dt = • R-. p (Al)
t

where R represents the convective and viscous terms. if the Y expre s ion

is algebraically simplified with D used wherever possible, the flklowino

simplified incompressible Poisson pressure equation is obtainL.d
'1 1

-(1'1)) + (vP) + 1+ 2v , + v+uD + vD
t x v x x v v x

Re xx v) (Pxx +  y y
t



This equation contains both spatial and time derivatives of the velocitI

divergence as well as the fluid velocities and pressure. Again, continuit

is used as a correcting factor for calculating pissure. Further simplifi-

cation can occur if small variations in the velocity divergence are assu:::!.

In this case, the spatial derivatives of 1) are set to zero in Fruatioi-. A

and the result becomes

D + (u-+2Vu + V) (p +p )
t x v Vy xx Vy

Hodge (53) used both Equations 42 and 43 and found no apparent differnc,

in the flow field solutions for his case of laminar flow. Also, Ciorin'.

method of Equation 40 is related to the pressure Equation 43. lodce (53!

showed that the Chorin technique is approximately related to a solut io7

of the Poi;son pressure equation using SOR iteration on a coarse grid of

twice the spacing. The Poisson pressure equation technique is chos~n

for the interior flow field because of the increased coupling whicb- occur>

in a finite difference rtepresentation. The body surface pressure, how-

ever, is calculated using the iteration technique of 1'Eiat ion 40. He(rL

mass conservation is imposed directly and the difficulty of evxluatinl

the Laplacian of pressure at the hod: surface in Equation 43 is avoided.

The following set of equations taken from Equations 18, o ,d

becomes the system used for the solution of incompressible turbuleT:t

viscous two-dimensional flow over airfoils:

u + uu + vu + uP = +-- (u + - ( + 1ut x v - -x P,w L \ \v
t

v + uv + vv + vD = -P - (v + 
X V X

t

P + u + 2v IxI + v = -(P, + P
t x V V V x

D u + v

26



'I nu::ierica1l sol tt ikun ot tht, !ovt-rnin,: cyi,,d ii

f o r-m in~ thle c ompu t at i on, in the(- 0o:! 1) 'a~ toa I pTE 1 i '

vi I in ear t ran sf orTTaJt ion L!i S CUSSe(I in Sty- t j OT) >. t ~

thet eqllat iLIn-. art. t ransf ormed tLo th, (-om;ttiion ] .jtr

equat ions , I: l jar ion L 44 tr on .1.i a rt t ra:i a r r

in Sect ion I I and Append!Ix A. I he r c-.t ti t,- t - .tt

forme-d eqnat ions hecoriT>-s

U, +- (v, u~-~ )1 + ::. -x U. --

+ 11 +> LI+ I

1.

VT +-'( v~vV)-- +x x v--

4- 1., +

- ( - - N p -)+ -- - -- -



B. Iv-nnd1Ar'., an,! Cn i .al nu it io

Me cLurnI9 t e dc-f in it in of the f low probl1em~ rt-u i rcs t . 1 ~i-l

of suf t ik- ient bounidarx' and initial conditions . 'fit virSok- ~ith

arc, couple-d, nonlineuar, f irs;t order in t imc, seconL., .rdhr in cl~, ' I ipt i

pairt ilal d ifttrential t-juat ions,. The i'llipti.' nlaltir( o' t'ic cc :,1n~W

%,L i rt-i 5 i rt, bouinI.ar.% condition> it ca boh undar-y. 'I't r t c r

dc riv'l ivu.- o! prcssurt. re-quire a botindar':- Condi t ion dL1 -1cri i; t 1, r* '

sr ca:. c 1 'L ' t imit de rivat ivt< t rm> rc~qu irt. i 1 (<. tn

t y* nril pr1  re t 1irouchlout t he f Ioiw f i c.

r L o 'i ions- on t 'h airt* oi I siIrac a rc !I- Y r

n I Oundkar ! ord k-O(!It io foll r I v i 'cou II i~ t 5, t .

a>. t tn t no1r:.2 copocn of , i~ it".: rnlt i'c zcro, ~r i

sutra with no t ranp i rat ion. I 'hu5  cond it ion> art- ret I)V tn1t tsj c. I it I

I,! t i -i i

Sk: -a' l" 1) c !'!, 5 l Ii a d r ~ :i '. : ~ Iir

inprt -iir, tr:

jf j1I fondt -, r v' \t 1it. i Ir- L lr tpi

r r t ik'A 1 rca . It

ro t, rc %.' a I - I'*

I ir p+



1ret-- t :

r -t rtdt r i i> d t r i't ive teur7ms reu r ii i r ri 1.1T.- t

t11,it i.-J. ptsr in f tic Yr ff rt i.- view> .J m:

bouniir, >on,! it ion,- ind it iu i -n~ fun In 1x t1( rc- OI -C , t C

t I 0022f Ial ~i 11n- 7 7 id it 1-x t, 1, r'f o rV imi.tn r.: >

L! CC a7 n 117 1 p tr ox-a c~ d~1- i i u r t !IF

!it r tiv L: uK rI I V i:~rc~ rt~tr>oVd>r

I'1 7z of o on ird trat> i n tt.-rc in tieoret iaL, >-)p ri

.inI, at a' > I, TialI rct-ar : woV, rm in> At J2 i pr t LI > 1''

;ra. i-alI in tV-tVr t ct ntt i, n re mv .- ef t riil i m C> VV. 1 oV KcvrA ivt

d'M2 LVeit'I W i iC I11' ,, C0"7:' e:: t'.

t -- c II . e p nga u ii, 'V V% . VfC

v' iscos it' COet V Cc ients , and turbulent kinet ic(:Lr L I'" 1-i

t-atci rode, I varies with both the geomut r' : ar t "I.: 1 --

ct''.--.mrmn" res;ults. In computational workt ai ml t t r~c

hu I c-nc, moe> 1 into numerical procedures and! theL ,rOil ru.--,.

a rec adI it i on;I f ac tIrsq wh ic h n &ed t o 1) c n> - i>r,

In this investigat ion, turbulence iS Mod>t d Vit, in ~l '.

vi1s c os itvy a)ppr oach blas4e d on P r anid t I's m ix n, Vog: t:.-. L r-

concept of this i>thud is that t hVIiriiln >';.L 'F-



anil bc rtlat c'- to th 0l St rd in rate Of te !IVOlan f low in a wav ana la !ous t o

t hat fur l amn ar v iscous s tresses The f undamentalI ex:press ion asprCV i 01,1s I',

int ruducced in E(lUa t ion 32 to obtain the simpli i ed turbu 1 cnt incor ;rcs!s il I

>.vie r-S okes equaj t ion , Equat ion 33 . T Iit al g br aic edd': v i sco I t,, hias

bet.,n "Ie X Lx L ens iC I V in OLt a in in., mime r i calI s u~'t ions, f or a var i t, k-,f

ac odn~i~.i , pro! I oms (2 , 25 , 9).

Teodd: 2y viscos ity model f or t urbulent f low with Ii Lero p ressnIrt crac I

near a skol id su r face , wh ichn incorporates thle mod i f icat ion, of (el,,c ian

itIT U aUr iL'St (3,and Peiwe:rt (57), is ciwvn 1,elov andl tlan7 ( i-_

k 4.

++

th %- J t (x I - -I d v (3 1 ;1Cr1 )P. "t lil r X I.

0, 4

th t!ci t IL- ~~Lial suire direcwton i ci'n 1< t ad 1 th -n ra tr ac"

tdit dcinv .ntan inerd pand out kd' so it':s andt k! 1- F odl L

is0 l V,' arm coI a n t, rh iian nr j t (2 . ) r ; i- t t r

in Eqjuat ion "S, mo'Il I the dlecreaSe o)f tl!a txir I'tjt:j,' in :t- 1'~it

f ill tucriulet region to the invici rh ion L) a r-rm ri'



no nd Iiti-ijona I iizec by th 10i, 03o a1 bound a ry la,,r (I1 t an, k- c;

eduboundary lave r ye locit': u is tin- outer laye r charaictcris:;L IL-10cl3t

iiit standard.Cir i-Smith ((6"3 values for the constant s art: k,

k 1= a!:'! A 26 olnt inuitv of the odd:-- v isLos ity ist rilut .on

ao.iv<dssi c ino f ron theu i n netr t o t he o ut cr 2.0Cc V'1 n i ruru

II1. c -n I- and Hne:(71) compared tis od'. vsosi t- V,, v

1-, 1'quat ions 55 throu-- . 5c9 with experimental data for severalont

Th3,VtI r - in a) n11uer ic '1 tul1rhbUIuvn t h ,u n dar': l a,.- r p r o 7ra: . unt

t ion> a d: 1512mna boundairy layer veo it po f ilEsi!

f ric-ot :n :~c o~ ut .. ~ paramu ter s had suIs tant iaIl'.. diffren: v,;l -

than" t , I, Prc'.icul cited value>- obt)ained for zero prci-sare rcu:i'..

Thc':- found t halt whJen the f low encountecrs an adverse pressu ru c2ra d ien t t,., r2c

eddy iso>It parameters rapidly, adjust to the values of k,7 = .05 and"

A 2 . Thv outer edd': viscosity constant appears to linearl-Icris

wi L!i: t a1co mel,-asu red' f ron the st a rt o)f t he a dve rs e p re ss u re crad 1.::

Th ,,t and hian kev: (I) f ou nd t ha t k c can -a r': f rom- a va 1 uie o f .01 to

vi I u of 1 or greater given) that the- adverse pressure cradie3,nt exist.-

.*-)r su"' i nt lonc-th downst*,rea:m.

usc, o: an odd': viscosity model similair in form to the on, Uivt K

in 1 i' os55 thro--gli 59 for an airfoil at angli of at tack ron ,It>

eca... m-at ion of tlie to'p ical flowV ft old charactcan st ic s. The uIfrur stun,

of the airfoil has, a pnessx,- ro distribution lic includes a nugion 7

pres-ant , tilst t c po, 'K, nekar the airfoil lea A 'Idor. TIc si1 K

i s fo Ivi ': - an ava r. p rtcssutir e g radien t ri t In. 'lin prcu'.r I- k

ton to dr~ ~I- at ow r erov er s t owa rd t hie t rai in t. .n1



turbulence modcl that is used for an uppe-r suriin t ubN

should includu the effects, of this adverse! pressure g ran:

eddy viscosity paramieters, therefore, take on teJobe, and En,-

of k1 = Thi and A =521 i n thli s reg io ,: he o )uter c ( xis

kma al so chance in tht- aeve~rse pressurer grad iitn rrg~n. i e

rate of chlance is af f'cted ho% thte pre-ssure, g ra ten an d I os-: ra r. i a ~
The press- ure grad ieflt Goes dccrea.e rapidly as the flwproceeds ows rd

An-: tendency. for V:to increase is probably of fset hothe dccr -si:.: Ccr--

p3esur cg!ra iet !i u, h valIueu of 'K is kep at t e! r1 7

.e EC;c' olcst V2 M, it'h th 1-di --sed1 adoerse rS L >:rt cc 2 1n

modii :Cn 1 nos wr tte in tr 't, oI the no0n i7ns loauat>'sx:

duce j11' t1n n- and 32., tl Iet unttie ac nodi:sin ;Ir 0 ,11, !

with res pec-t to) theL airfoilI chord.......an a n onies oa Qa

a re h-enc e fo r th impn liedCi. '[het ed': \'iscos tv model becomes

SkV : Re v

-
I

+

A'4 e a an-re cons i C mA, ~or ,-~ sr s-ire c-rad tent par~'' en.
ii -honi-c's t c. us ], rpentte phosical chiarct r i-A i

in, lrzt sevparue-d rec2,ns wli. occur d!ur ing i rf oilI t-aIl IrailI in .' L 1,



stall occurs when the turbulent boundary layer separation .ouve towa:rd tht

leading edge of the airfoil as the angle of attack increases. I he prus:i.r<

distribution in a trai'ing edge separated region has small igradients (72).

This observation motivates another chang, to the eddy viscosity modcl. '.P>-

inner eddy viscosity parameter is relaxed back toward the equil ibriu. value

of .41. The separation point, which precedes the return to z-ro' pressure ,rad-

ient, is selected as the point to start the expcnential decav. The fullowinc

relaxation form with distances nondimensionalized by the chord is used

f A I + B exp(- )s S sd

r

f 1= s " d

where f is the relaxation factor which multiplies the initial value of k 2

ki s is the distance downstream from the trailing edge separation point,

s is the delay distance, s is the relaxation distance, and A and B are

d r

constants. The constants A and B are determined by applying the conditions

f 1 at s = s ane f k 2f/k as s approaches infinity where k is the
dlf ii -if

asymptotic value of k downstream. Thus, A and B become

A = k ?/kli B = A- I
lf iiB A -1

Measurements of Bachalo (73) and Baker (74) in the trailin edge separa-

tion region indicate the presence of a lower but finite turbulent intensit-y

when compared with the separated turbulent shear layer. T!e velocit-y deriv-

ative terms in the inner eddy viscosity and damping factor expressions, Equa-

tions 60 and 62, can approach zero in a region near a velocity inflection

point. In this case, a zero eddy viscosity is permitted in a turbulent

separated region which is contrary to the apparent flow structure. This same

zero eddy viscosity behavior can also occur in the case of sheddino separation

bubbles from the airfoil surface. In order to prevent the appearance 01
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laminar regions within the turbulent, adverse pressure gradient, separated

flow field during airfoil stall, a limiting technique is employed. The innkr

eddy viscosity is prevented from decreasing in value as the normal distance

from the surface increases. This restriction simulates the uniform turbulent

intensities measured (73,74) in the trailing edge separated region. The inn r

eddy viscosity is further limited by imposing a condition of no decrease

in the downstream direction. This limit provides for a finite turbulent

intensity in separated regions which may develop in the turbulent boundary

laver. The limit is initiated by obtaining the distribution of eddy vis-

cosity in the attached boundary layer near the leading edge of the airfeil.

This distribution . is compared with the distributions calculated by the
ic

model at downstream locations. The outer eddy viscosity, which has no velocity

derivative, is not limited in any way. The "limiting" technique is passive in

the sense that the locally computed value for the inner eddy viscosity is used

whenever possible. Numerical experiments without the "limiting" technique

displayed unphysical results because the conventionally modelled eddy viscosity

is divergent. The inception of separated flow decreased the eddy viscosity

thereby causing futher separation. The "limiting" concept is necessary to

prevent this unphysical result.

The transition from laminar flow to fully turbulent flow is modelled

using the transition model of Dhawan and Narasimha (75). The expression for

the transition factor 7 is given below

x - x 2
t

= 1 - exp- .412(-- - ) (67)

where x is the tangential direction coordinate on the bod. surface, x ist

the location where transition starts, and x-=3/4 - x 1 /4 defines the

distance required to .... from 7 1/4 to 7 3/4.

Some of the e .plessions in the turbulent boundary ]aver eddy viscosity
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model are conveniently expressed in terms of quantities in the transforried

plane described in Section II. The velocity derivatives in the inner eddy

viscosity model are formulated by deterriini.g the tangential and normal

components of velocity, u and v- respectively, to the body surface

at a position

u( , ') c u(,', r) - cv , ) 

v(-, r) = cIu( , ) + c2 v( ., r,) (69)

where cI and c, are components of the unit outward normal to the bod%, sur-

face at position (I, ) given by

c= -vj/ c -

Then, the directional derivative definition is used to obtain the surface

normal derivative of u and the surface tangential derivative of ' e:-:pressec as

= -C(V u - + . - x ( <70

c (v - - c ' - >x x (71)

which correspond to the u and v derivatives of the Cartesian eddy' vis-v, x

cosity model expressions, Equations 60 through 64.

The turbulence structure in the far wake is modelled ;,'ith an eddy

viscosity expression similar to the outer eddy viscosity model in the tur-

bulent boundary layer. The model is based on the assumption of a self-

preserving, equilibrium turbulent wake with constant pressure in incomlr-

sible flow. The approach has been experimentally investigated by Narasimiaa

and Prabhu (76) who obtained the following expression

w = k,w (72)

where w () = maxU - u(:,vl is the maximum velocity defect in the, wake,

is a half wake width defined where the velocity defect becnme one, half
w

the maximum value, and k 3 is a constant equal to .0-5. If the expcrinay.al v
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integrated value of the wake defect function is used, then Equation 72 can

be written in terms of the parameters of edge velocity and displacement

thickness similar to boundary layers as follows:

w
k u Re (73)
3 e w

where u is the nondimensional velocity at the edge of the wake, is th1e
e w

nondimensional displacement thickness for the half wake as defined by Equa-

tion 64, and k becomes .0634. This expression has been utilized by Green,

3

et al (77) in an integral method for predicting two-dimensional incompressible

and compressible turbulent wakes of lifting airfoils. For an incompressibl-,

constant pressure wake the momentum integral equation reduces to a statement

that the momentum thickness is a constant. These conditions exist in t

far wake of an airfoil. In addition, in the far wake the displacement d

momentum thicknesses become equal as shown by the experimental r. ,ults of

Narasimha and Prabhu (76). Thus the far wake eddy viscosity is approximate3-

constant. The transition in the wake from thc turbalent core regior, o the

inviscid freestream region on each side of the wake is modelled with the

intermittenc%: factor of Equation 63 where , is now the wake half width and

y is the normal distance from the wake center.

The turbulent near wake region mixing rates where the wall boundary

layers merge and eventually become the far wake are not well understood fro:::

either an analytical or experimental viewpoint. In the flow regine under

consideration, a laminar boundary layer from the lower airfoil surface ri..

with a turbulent boundary layer from the upper surface. An edd', vi rcosity

model similar to that used in the outer turbulent boundary layer and tht. far

wake is used. Inouve, et al (78) applied the Cebeci-Smith (()3) outer lav.' r

model in the near wake of a flat plate and obtained good agre >, :: for tCi

mean velocity profiles;. They allowed the constant k) to rcachl t, t!
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equilibrium value of .0168 over a length of one chord from the trailing

edge. The computed eddy viscosity was still about 50: low when compared

with experiment at the one chord distance. Later, Burggraf (79) -ompared

several turbulence models for various near wake flows and concluded that

the Cebeci-Smith model adequately predicted the mean velocity profiles.

The merging of the upper and lower surface boundary layers is modelled

with a simplified interaction hypothesis approach introduced by Bradshaw (80).

The two layers are initially allowed to develop downstream a distance L1

without interaction. At this point the eddy viscosity is increased eXponr,-

tially in the adjacent laminar boundary layer from a zero value to tlLa far

wake calculated value - at a distance WL from the trailing' eu c. mIlisow

eddy viscosity variation is formulated as follows

s - WL

1/2 £ o I + tanh (S W - )- s > I'

0 s

where WL is the distance from the trailing edge to a location half way
av

between the distances L1 and WE9 and s is the local distance from the

trailing edge. The coefficient 8 is selected so that. 0 at s

and - - .: at s = WLI) because at s = W L the hyperbolic tangent function
Os-

becomes equal to 0.9993 while at s = WLI it becomes - 0.9993. The ed':v

viscosity profile in the turbulent boundary layer near the trailing edtc

is extended into the near wake.

D. Force Coefficients

The force which is exerted on the body by the moving fluid around tic'

body can be determined from the Cauchy integral equation for COn. sr,,t ia,

of linear momentum applied at the body surface or on a closed path smurround-

ing the body. The basic expressions for the force coefficients farimul ]t-d
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in the (x,v) physical plane coordinate sVstem are given by Fruat.ions 1).

and D.12b derived in Appendix D for an incompressible turbulent viscous fu'.

Consider first the body surface where the components of velocity are

identically zero from the no slip boundary conditions. In this case, the.

equations become

f 1 ,u s
C = 2n p + (4nl - + 2n9 6" + dfx y Re:.X:X

Sb

=, -- n) + iL (2n + !-v) + 4 n c') s 7:'
Cfy ' - P Re (2n (i'y .,X 2

Sb

where the integration is over the body contour denoted b, Sh. Iii, first

term in each expression is the contribution caused by pressure- furres whi]L

the second term is the viscous stress contribution.

The force coefficients, Equations 75 and 76, determined at the body

surface can be transformed to the computational plane by usixg the relations

for the outward normal vector to an r; contour, line integrals and derivatives

given in Appendix A. The transformed equations beco:e

ra I

C = 2 maxP+ u- +  J( , - x(!U )+ ) (77

min

max

Cfy 'p RJ
m in

where the no slip boundary condition which implies u = v. = t in lt,

surface is used. The viscous stress terms are further simplified V usin,:

continuity at the body surface and the vorticity ( x vi F (u-itio ,. . on

the body surface to obtain

l I S



f max

C -

fx 2y -- d (75)
~tn inRerain

max 2 y A

Cf "xcp - Re ()

c. in

where the vrticity on the body surface is given by

= -(,.v + xm )/J (II)

The corresponding moment (positive counterclockwise) about a point P

located within the body cross-section with coordinates (x , v ) is ,iv rp

as

CP : (x - xp)(-2xrp - , ) (y - v)(2y p - 0 )d 7 (- 2

min

Next consider a ain the more general case of a closed path around

the bodys whose force coefti.ints are given by Equations D.12a and D.12b.

Assume that the closed path is an r contour. Then, using the transform-

expressions in Appendix A for the outward normnl vector to an ' contour,

integrals, and derivatives, the force coefficients for the hod'- in tern-

of quantities on a constant ' lint, in the flow field 1become
p

J~max .
fx 2v :p - - [u ( - 4- 2,,, - u : - - - ) -4- + .(x

main t

p mar:

- v, (x ") + ?u(u, - v \ d --.t

M T)



max ____

S-2xp Re- (2x9 + y-) - v (2xgxl + y + u (xv )Iy Re . .-
Ft

m-in

p max

- u (x y) + 2v(uyF - vx: d t - 2v 3 d-d' (84)

rab in

where rib r< r m. The terms in the line integral represent in order
- p - a

pressure forces, viscous forces, and convective outflows of linear momentu:7.

The area integral term is the time rate of increase of linear morentum con-

tairned in the control volume bounded by the body T, contour and the selected

TL contour.
p

The corresponding lift and drag coefficients are then calculated usin:

Equations P.13 and D.14.
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SECTIO: IV

NUMERICAL >ETHOP

The numerical methods used to obtain solutions ,,r iTr<-. r("

turbulent flow over airfoils are presented. 'l1w nu::.,ria, iirit di,:r:...

procedure which vields the grid transformation is first disco . 2>.

implicit fin itt. difference method for obtaining approximate Olutl,,1 t

the unsteadv, incompressible, turbulent .Navier-Stokes eCuat i n ii e.t

described . u-unnrical boundar;. conditions and initial condit ion> are c :-

sidered . Iht nu-,:ricaI proct-dure for incorporat ing the t crbu I:ct e ,

viscosity model is discussed. The computation of tk, fore! coci :c T:

on the bod: is then presented.

A. Grid Transformation

The numerical solution of the governing equations for tlc tra'>, v

tion is carried out in the transformod or computational plac, oc a core

mesl ( , -) s'ste. The body contour ( and th e far titid ound,";

become constant ' contours (Figure 1). Tie far fiild houndar. is us I

used to approximate infinity in incompressible- flow proic-:. Con,-

contours in the physical plane are required to transforr to ei- ,,

coordinate lines with unit step size in the transformed plane. lit ,

contours in the physical plane is controlled b,v the set of elliptic ,,,i

The ,: contour spacing on the body snrfaice and outer boundary i t IL i 11

plane is determined by the chosen point distribution on each surf , i1:,

constan t , contours are alsk, required to transform to ego'I-spt r-

dinate ] int.s, with unit step size in the transformed plan(. I I i

are dena ted b,. the subscript i with rang-e I " i . where l,. i> ti , Inc)

of lines. Similar>:. the , lins are ident ified by a su .cript . ithi rj

41
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I m.L\x where JM.VK t lie numlnbr of 1 in,.~ zi lll- 1

an,! 1 IAX" are t he boiL' and outeor bounda rx .ric,-;,r-,&t1'

The constant 1 lime> i = I and" IMAN ezott tilt linKct in t ht

phi's ic-A1 pl ane an-' are' thevrefore idcnt i cil

Th0 gv er n in cl 1 ipc t r anst o rrmuta ioun equtiions l.:n io> i--

art, wr it ttn with f inite dlitfferurncts in quasi-linL-arizt ! for7, for :;L 1-

at ion. (f , j). Second order accuratec cen tralI d i f erunce., - c i n "o:i '

are use,' for evaluatinlo each- term. Ihe highest o~rce'Lr derivati','

the unknown at location (i, j ) while the trans, cr:::a* ionl o0e f iL ie. , W . i

contain lower order derivatives, are evaltiatedI with, prevo':ni \ iilii t

variables x and y. The difference expressions are i'nhlc. rotY

indicEs i and j are understood when om-itted.

x= 1j ( i~l + x .9(x iljl x i+1

+'x+ x )+ ~- (. x )? + (. -' Q /(+
j+l - + 'j--1 'i 1 ''j-1

~(' + V_) -~ + ' V ;'

-+ +'~ V ) -- [( p +(' - l / +

The i index near the b ranch cut is adJusted as fllw

when i 1 theun i - 1 = IX>-: 1

when Mr thenl i +1

when i 1"W", then i=I

The ucLt o:- finite difference equat ic"5,- has t he rangre Of mi ,, S ''n:

IM":- I and 2 j j~~:-1 which, results- inll AYf

equations for the unkno%-n vilues of x andl y at the interior grid! pnint.



I he svst of di fferencu equat ions is solveLd us ing succ tic ive, over reL a:

t ion (SOFK I it erationJ. For a general function f , an approximaite s:o] Ut i~

for f using SOR iteration has the form

f +f +( I )

w-nere s represents the iterate umer is an acculIeration parame. ter, ;inL

*represent.- the Current value of f cal culated from the difference equation.

The acceleration paraimeter is alxga,:. on,: for the first iteration. Thet svst:-.

ofI i nea r i ztd d i ffer enceu equa tions rIvetn by, Equations 85 and 86 obto in< 2

ca the elliptic:cnr~jgd fierenrialn, cuations is consistentl': ord,,re2 (

hu, of lalot imun a"CL I er-it ion paramt -rs *.CanI heC Cal cul ateLd f ro :: Y

theom (I ) and are iEn by IiLed.:- c~ Converpence. of the it rationpr-ir

is deteurminud I)', compIrin tie a!,so I ute va! ue of the dfkerence: in T-.I C C

iterate,, wit!, a prescribed error criterda 1.

The Sop iteration tech21niquie ruqui res an miit lal guetss for tiasu lt

Gecmetric contours with, ai shapel a ill ar to the. outeor computational bhoincda c

arL useil for constant 'line:, and st ra i,.ht lines iw.hich emanate ro the,. bKLl

center are uscd for l Iinvs . As iri lar app roach has been successf i !usec-

b),- Tlhame s (-4 ) and Hodge M)i3.

flthe forc: in6 function Q( , ' ) def ined b-, Equa t ionl 15 i ev C- II natL

t I c;; Vn:the ( " I ) plane fol1lowin4 the proceduire desc r ilhed La- Sect ion I .

'The siA Ta.Iar it parameILter valuesi (Whi Ach iAye eq. inc en>o tavl-et Ta!

VCl 1)( i t'V f Or a spec if i ed numbher of bounddr's. I a'v'Lr 0oin ts a!re i c Ii t trom

Eqtulat in 1il8 us nL; 'ewt n I~pSOnI i tterain T h Ic tv C I u v vl

given x lint.) arL f oundI f r,) the s inT lur itv roLa I en ata o: U

der ivat Lves, riven bv Equati!ons, 22 and 23 irce theikn approiial i.. t

abovt- valIuea, f or y anid the spu ic f ied (Iif fere-nces ai f o Ios



where .' I v zirL, tt V boundarv lavur v va luc>,, ann. ~ >

liar field v dii I-crenct, between the last two paintFs an the i v r i

I hcn th I d0a i" in, faic tor D) is f ound us in g Equat ion 'I' L :t tli t

express-ion far d, /'d, in, Equation 21 is evaluated on thec far field:'Lx'l

V~ an,, on ar I boundlary layer lvinterval dctcrmink- 1- ti%

Tis< sv>:en7 of equations far A\ k is solved usina; (2ius , L-1 
ma0.

for a g iven 1 in. , val1ues for A and 1) zirt Cal11at-l. 'Or us- i!ev

th,.* '( forc ing, function. 1.stunc t ion is then. used dur in tA

iterat ion :or the trans : ~ormat ion valus o -:- an" N

Add i t ana I- contours can bec addetd in t (cc wall, rca ion 1yus";

interpolating; technique given iTmAp pendix. C.

B.~~~ fnirSoe cii ifrence c-Cua tj ons

Approximitc soliut ions of the unsteady, Reynolds av ragc~cd

s ihict, turlhul ent, Nay icr-Stokes equations are obtained byus,-ni,.<

li n t c i freceprocedure.. Expl icit numerical methods: car.

olbta in appoiaesolutions by adv ancinug the t Inc,. by sm all in c rC:>

Thie al I owa,) I e t ime increments are constrained Iy, numericalI stab Ii I,"*,

lric it Ifinite. di f erence niethods can also pray ide: app rox: matt so-

narcincin t imi with small tint steps. Implicit mt~inu > i-

nume r ica I-, st ,iIi t v cons4t ra ints imposLd on1 the tim step. .w~ ,

t ie st C' a I a!r: swtem7 of simul tank-ous dif feren, t equnut io!

A m-at r ix it t ralt ivyt t'chnliquelt sIac: as ;OK i terat ion iszi, an L at ra:: L

Mcth be., all-k of th Il arg, matrix siL'. Convcr,,unet r: i r .~ 21 -

duuecd in plac> u: s0a it cr it kria .



tile imp) ic it method cons ists of beth. a I inearizat ion of the, ecyat :..-

an t. a app I icat fon of fin, it e d iff eren I)-.s' to those equat ions 'lu c L-

ponent ,trans formed * mo,:n turn equation given by Eqcuat ion 48 is- conIsidered'

first lv-ititn:till' CC)nVeLC nyu term's, thi, equat ion het

X, X .N

LIi - 1r I v -- v -- - U --- I~ ~ '

+i. 4 L.

Jica t SO v y r y'\titt in (qua-Iioa1 ort.:- rlI ?owt- r rTlv

deur i vt I C:te var lab, es occur ini coefficients I h curry - vZ..,

for th u-n':vra Li t locat io I, i, J) occuirs, in the Jges :cy r

der ivaie a: w;-.s I wie Lt ie c oe ff-1iciet2nts a rt e aaed........t at

availabl vaue fort va r iables i u, v , and- p . In this fort:. I -u> sln

o:u-iT: the convectliv, terms , (vii -v,-: ),I , is proportional to t ' L c o:-.ny-n

L01. c c yvivv in the- uirtect ion. Siialthe raetficn,'nt u. in tIe ! ..

Iv tr:u. v- 11 -i' rS -O I, pr1 o-to::I to t ; ~*Comp cn-)ei't 0! se> 0c 1- <H

* di~ct on . chs quan xiti t ies art uoinae e' antC2rsot

L encu ::, svt< os5n iv< io i.d ppc ,L'ix tr sec'I--

T1)1vi i . 1I1 C e C- . Qpen&1 c, r. d~. c Laccv

l ~ ~ t Si ten in Fen ro i. Frtrdracrt b 1%''L

o ,tL, r the tiT: te driVatiVe.1L:rsdeiti-cp

nwr' tc ~hsecond order accuraite contra] different - 1 1

Oktr er t ra I i ern xpess ions areuse for hIic st IvL,,1

i 1 i in Lit-evscu to.rts .8 Sconcd ordtr ajccuratt,~w d> t vIic

U iCfo r tl.', vclocit;, first derivatives in thc convi t L r~

no 1 eyritha sig n Of thelcal \'vlu it- iTnIL.

d irr t iui If t h,1 cicr upwind 4i jfrn Ic o lit

rU..~~ c~i '7 dcate f orwajrd ui vnd difret in. 's .7-

Air --c',} .i:~r.ui. for0 derivte-ocusi



upw,,ind d i ffcrcncin I-, is- uscd if VC 0). ScO: t  r:ty :ccrs upl- (. -~-

ferenes arc also used for thu vc-loci- f ir-t durivot iv,, i:. t ye ,

terms;. Th'le dircction is dletermin, d Ih: tr- ' icn of tic oL- lr

Points on the, .1 and i J .X -IconTtoirs u~se 4r -tru n-

di f ft ru-ncus for 'first dCri-uitiv-'s if t . veu xcIlct-: ir o:idct

flow, Crc:-: th, hoc-: .,un 2CL (J=l 1 or thuL outu rbuda-J 11K. ciA

the body. sort Jcu thu grid spacino,, is extremely s-'I, andc

are sn:al1 ntaar th'r outer boundary. Thus , in bloth! ca--es te -<

artitficial visco;it- l in a neogligible C-f C-t. Thetosfr-t o-O

t iu s ' inl E~qua tic" S I ' -u1u e withi t-condl ordetr cpt r a. c

Th , el o c ito de i- t 1 'cs i n th oc bito d ixec-r g n c f te rn , an

us in'1 c ent1r alI i' i ,

2is erence ecoa t ions- a rc w7r it tetn wit -) ht fCollIow in r, 0n~n - c

vent ion-s. Terms; whiich contain unknowns at location (ij) areu-

sc r iptud " e f in it e di IffEr en ce ex\pr es s ion fr lo cation-(-, i

dcccd p r ex-ousx i s unde ,r st o od when o nly th e ter.P i-u h o

c-nw-.~~~ nj J n supers-cript n are assumed2( w.hu a on t u .I ' c irI

clic eua-t ion, for Equation Sfbeco7.us

n-i
+i.-m . 1 + (',I. U u u

- - t p+ i-I + i--(1 -P9

+ r -- i -u-c l---( --.

t (hi i+ J,0 j U -i

-u fi IX I +

I V I



whert

for UC > 0 for UC> 0

ICI = i - 1 IC] - i + 1

IC2 = i - 2 IC2 = i + 2

for VC 0 for VC 0

JCI j - 1 JcI = j + I

JC = j JC2 j + 2

an I" -/2 and VV

w _ r ,

for UV ; 0 for UV 0

IV] = i - 1 1 i + I

IV2 = i - 2 1V2= i + 2

for VV 0 for VV 0

JV1 = j - 1 JV] = j + 1

JV2= j - 2 JV2 =j + 2

The difference equation for conservation of mass, Equation 51, for location

(i, j) is given by:

xx

y2J x± - J ~ -v 1  y- . uD= (ui+ - ui_ !  - (i -v) - - (j+4-- uj-

+ v 7 (vj+] - vj~1  (l)

The following finite difference definitions are introduced for the

transformation derivatives and coefficients at location (i, j):

XETA = x./2J Y.I1 = x./2J

YETA = v /2,J YX = v

ALFA ='/J GAM, = y/.j BETA = -F/2.i-

With these definitions, Equation 90 can he writter to provide an cxpre-;sion
n

for u,. given by

47
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n-i
i.= u.. + LtI-YEiA[P+ - Pi-) + ' 1 1)j - pI

+ 'C (4u - u )+ VC (4u -v U.)
I , +C-' JC1,

+ -- LALFA(u+ + i-1 + +g11u.+
Fe ti-fl i-I j+" J-t -

'u Cc +BEA(u+ - ui+] j- + i-i +- ui-] j< ) + i+1 j4u- , - u,,

+ uj "I' / 4- t3 + %'C + 7'+'

+ (ALFA + GA-,) (

wh,.ere denotes the value of the unknovn cAculated directlv- fret. t -,c dif-

ference equation.

Several observations are made concerning th, difference ecquation ".or

uij given by Equation 92. The unknowns %,,, and p.. do not appear explicitly.

In fact pij does not appear at all. The - component of velocity 'ij doe.

appear implicitIy in the quasi-linear coefficients I C and VC as dous v..

The previous value for u.. occurs explicitly in the t ,r. contain in t c

velocity divergence P. The finite difference linearination assumption

requires that the latest prior values for u .. and v.. are ua, in thi,>,

instances.

In an analogous manner, the y component, transfored noni t h equt
n

Equation 40, is written for v. and becoesij

n-Ii Vii + :.t[vEIA(p - p- - XXI(p. -

+ C (4ie - v 2 + vC ($v Vl. - v
ICI IC2 1C] 'IC?

+ - ALiA(v.. + v ) + CAXA (\ + v.J+" - .1-]

:tI



+ BETA v -vi+l j- + v i- j-1 - i-l j ]) + v 11.'l - ].2
i-U j+1 i

+ W v - v )]]/I + Itt3( UC + VC + +
J%7-

+ - (ALFA + GA A] (93)

A cain, p.j does not appear either explicitly or implicitly. The unknown

u.j appears implicitly in the coefficients IC and VC. Also, vi. occurs

implicitly in ''C and VC and explicitly in the velocity divergence ter,-..

"ie most current previous values for u, and v.. are used in these loVw-r

order coefficients.

The static pressure throughout the flow field is calculated fro::. th,-

Poisson pressure equation, Equation 50, derived in Section II. Second

order accurate central differences are used to approximate the second
4

derivatives of pressure in the transformed Laplacian term. The first

derivatives of pressure in the Laplacian are approximated by scond o:-der

accurate upwind differences. The direction is based on the sign of t-:_

coefficients - and 7 which is the same method used for the momentu. equc-

tions. In this equation, a nonlinear source term occurs whichi is com:7ose-d

of transformation and velocity derivatives. The transformation derivativt--

are approximated with second order accurate central differences. Second

order accurate upwind differences are used for the velocity derivativt.s.

The direction of the differences at each location is determincd ry tle

direction of the local ' and • velocity components related to I'C and '"

previously defined. The time derivative of the velocity divergcnct is

approximated with a first order accurate backward difference. I> rerinfri-

ment that the velocity ,!ivinrpence at the nth time ste; he zero is incor-

porated into the difference equation by setting T) to nero. ih4 nu r cIl



non-zero quantity Dn - I is retained as a correction factor. In this .w:,

the static pressure is found which tends to satisfy mass conservation at

every location for each time step.

The following definitions are given for the finite difference repre-

sentation of the source terms as described above:

'X = (v u - y u)/J

UY = (x Eur - xU

VX = (v \' . v :
.V~ - V -V r  T .

VY = (x-v - x v /J

If t*-,sc definitions, the previous transformation coefficient definition>,

and index conventions are used, the transformed pressure equation, Equa-

i_,n , > rucirrangcd for the field static pressure p.. given by

+ ('':) + 2(VX)(UY) + (VY)- + ALFA(p+ + )
t+

" P + P j-1) + BETA(pi+1 j+1 - Pi+l j-1 + P i-1 j-1

; __ j :}+"- 4PI --1Piv,+1 -V (4pi+ --p.+.. / 3 '

+ (4 +) 3\ V .. .t 1 .

+ .'(ALFA + GAM") 14)

I t t <u t i ! p.. does not appear implicitly. The velocity coT.ponJ..t-;

u.. an! v are onl: present implicitly in the nonlinear source ter:'...

I, three difference equations, Equations 92 thru 94, form a s t

equations for the flow variables u, v, and p at location (i, J) in ter.-,

the transformation derivatives and values of the \,ariable.s at ncigh!orin ,

points. The quasi-Iinearization and differencing methods ha co d ,ealp t

equations with: respect to the higher order terms for the unkn0own, at 1,'t i,,

0i, j).



The large system of finite difference quations which must be solvd

for the n t h time step is solved using SOR iteration given by

(s+1) (s) u(u. . .+(1- + . (95u\ Vi1j uv )  lj

= ,; (s)
V s l 111 V j + ( I: V ) v.. (95h)
vii u 1] i v I;

(sl) + (1(s)

ij p ij +  p Pi

where s is the iterate number, * designates the current value obtained

from the difference equation, and and . are acceleration parametcr .uv p

The acceleration parameters are always unity for the first iteratiorn.

The computation of the wall static pressure is carried out separate:Iv

as discussed in Section I. The pressure iteration technique of Ciorin (,i

given by Equation 40, avoids the difficulty of formulating one sided dif-

ferences at the body for the Laplacian of pressure. Also, at the body sur-

face, conservation of mass is directly imposed. Second order accura:e

upwind differences are used for the transformation and velocity first

derivatives in the velocity divergence of Equation 51. The acceleration

parameter ., which is related to SOR iteration of the Poisson pressurc e(,ila-

tion, is given by Hodge (53) as

= 2:. /-t(ALFA + GAM'A)
ph

where p is an acceleration parameter for the correspondi,,.& Su!. itr.t ion

of the Poisson pressure equation. For consistencv, the iterat ion .w.io

ic repeated as

()
(s+]) = pl~ )  c' 7 7

where s represents the iterate number and the indt Xnottio is kpt a>

described above.

The trailing edge. pressure on an airfoil can b dif' icult te obtain

usin. the iteration procedure if a sufficient v fink- >r i is not prk!,it.

51



Hodge (53) experienced such difficulties in his laminar flow wor'. '1, L

trailing edge pressure can then be calculated using an average of valuu -

obtained by linearly extrapolating the pressure: calculated at the closo.t

points on the upper and lower surfaces. For a two point linear extrapo la-

tion in the x direction, the pressure at the trailing edge becomcn

(x] - x3 ) P2 - (xl - x<) p3
P 3

2 (-

where the x's are the x values at tho seltected sur: ace point, a t! -

face j = I valu. is understood.

The iteration procedure follows a prescribed urti.r at eaCt. v int oiC,"-

tion (i, j). Only the body surface prssure is corpaeon d poin t.

At field points, the u velocity component is complited *irst

velocity component, and finally the field p:essu.r- p. I mt rLrI. rL

by varying the (j index from j = 1 thru j I Y.A].-l on succe>. i " I

in the transformed plane. The lines i = I thru i = arAk- it. t r

Values for the variables at i = I are set Lqua] to t.t a.s at i i.

to insure continuity across the t ran forcmat ion bran( , cut. :i iidt:

is adjusted across the branch, cut in a manner identical wi K. t,.t, ds'r:

for obtaining the tran-forriation fr,, , equation. F , a '

C. Bnun-sr': and Initial Ciondition-

Boundary and initiai conditi,ns are formilattd for ii>t i,: tK(.,

tional plane in ordt.r to completelv( dt fine the numeriral pri;] . bun ,,r

condition, on the hod'. surfare ar coivcneintl' speCifid Vit, , I

fitte(d coerd inate .'sitem. 11 first contour is (contri, t.,! tr' it tu ,



body surface. The analytical no slip boundary conditions for velocity

given by Equation 52 can be directly applied to the body surface in the

computational plane and are given by

u 0 vb = 0 (98)

where the subscript b denotes the body surface ' contour. The surface

pressure is calculated as discussed in Section IV.B.

The lines i = 1 and i = IIAX in the computational plane define tlht

branch cut in the physical plane. No boundary conditions are requ 4red or

allowed on these contours. The matching of solutions on these line<, wlic).

was described previously, provides a continuous solutio . a,ross the cut.

The outer boundary in the physical plane frequently represents con-

ditions at infinity (freestream conditions) civen y Eq;uaticns 53 and 54.

In the body-fitted coordinate system, the outer boundary becomes the largct

line in the computational plane. Thie physicaL cxter bou:ndar: ,

to be a circle with a radius of I0 airfoil chord . Ilh, distri)1:t , f

points on the outer boundary is readily spcCified On l circIL ; a-, t

initial input solution for obtaining the transfor.ait ion a di. cu>- .0

Section IV.A is simple to specify. Ghia and llodgt ( iappli. ann:..r

inviscid anla,.sis to a ,loukowski airfoil at angle of attack lusin. frt-

stream boundary conditions fc,r different ouLer boundarie-. The, found

that for a 10' angle of attack the lift cocfficjei .t dliffcred - 1 !s tls :

one percent and the maximum suction pressure coeificit.t by ,t tw, ?-

cent fro:c, the analytical result. Naviecr-S tokts soutions x>inc .i cirktil],r

outer bounlary with a smaller radius are compar.d w.it thl I chrd rCi - i

result to determine effects of boundar, tl aremk't. ]

With the outer bou-idarv : elected to ;y r ,:::Ia • far fI I rn,-

sifteam, the boundary conditions for r'lit- and ir:ssxr ar, s;, i i,.



As pointed out by Roache (83), caution must be exercised in applying tilt

analytical conditions, Equations 53 and 54, which are strictly valid only

in the limit of large distances from the body. If these conditions Lre

used on a boundary at a finite distance away, the result may predict no

drag since a wake cannot exist at the outer boundary. This problem is

avoided by applying upstream and downstream boundary conditions on the

outer boundary. The upstream boundary along which conditions are fixed

is defined by the semicircle in the half plane x -' 0 where the x axis lies

along the airfoil chord with the origin at the midchord. The downstrea-:.

boundary for which some variables are permitted to be free is the se.icirc IC

in the half plane x > 0.

The upstream boundary conditions for the incoming undisturbed flow

bec em ,

u i J-.!* : cos v. sin - Pi 0 (9 )

where i ranges over all contours which terminate on the upstream boundary.

The downstream boundary conditiors must allow a wake downstrea: of a

body to pass through the boundary. The no change boundary condition lhas

been wide>y used (53,83) and meets this requirement. One approach requires

no change of the velocity components in the freestream direction. Vs inc

the expressions for the directional derivative and gradient in the trsr,-

formed plane, this boundary condition can be written for the u componunt

of velocity as

u = u. (x sin, - yr cos)/(x. sin - y. cos)

where t is the geometric angle of attack. Xov consider a si:, i ar

stream boundary cond it ion where the no change con~dition is (,:- II nt l.t

velocity components along the downstrea-, " contours. I n a si m 1i r mam n ( r

this condition in the transformed plant hecomls

1 = ) V



This boundary condition is identical with the freestream direction boundsry

condition of Equation 100a when the contours are in the freestrea-,. direttio:.

In this case, tant = yr/x, and Equation lO0a becomes identical with Equation lf"

This case does occur in the downstream wake region for the transform.ation

obtained in Section IV.A. Small changes in the velocity components are

found in the far wake region of bodies. The downstream- far field inviscid

flow field also has negligible changes as seen in the analysis of Appcndix

F. Thus, the no change conditions of Equation 100 approximate the s.m-all ir

field downstream variations in velocity while allowing the momentum, defect

in a wake to exit at the outer boundary.

The downstream outer boundary condition for pressure must 1e considereL

along with the velocity conditions. Hodge (53) investiqated the use o' a

similar no change condition for pressure, namel,-, p, = 0 coupled with tht

velocity conditions of Equation 100b. His laminar solution developed pres-

sure oscillations. The more restrictive condition of specifyin2 the free-

stream pressure in the far wake was successfully used by Hiodge (53' . Ti-.

specification of pressure recovery with a freely developing velocitv def,,t

in the far wake gives a set of numerical boundary conditions whiich

can ph;'scially represent the far wake at a finite far field doistra::

boundary. The downstream pressure boundary condition beco-lcs

S0(1()

The suitable description of the physics at thie downstrear:. comp;-:t

tional boundar\ must be written in finite differencL form::. ' le o uc IIT-:

condition approximated with a second order accurate centrail di1ff r':!'

applied at the midpoint in the computational plank letw,-: t h ,

point and first interior point on a downstream contour (i ind:,c x CI' ,

uIMAX: ,,-= l'A u V (]- I

) )



for the downstream boundary conditions of the veloc ity co:npontnts.

alternate formulation is obtained by appro :imatinig the no chiang cond it ion

with a second order accurate upwind difference appl ied at the hounid,-r poirK'

Then, the doIcns trear-- boundary conditions for the- velocity cninn n

JNIA. q J LA _l -1 2 )/3

These boundary conditions also foll by. froi-, a second degree polynorninal fit

with a zero derivative imposed at the dovnstrean. boundary.

Thle tine dependent finite difference method g4iven previousl;reare

a set of initial values- for the velocities and! pre.ssures at alAI tl, (i A

locations. This requireament pa-rallels the result. d iscusstec I or tlie: Ll'

ferent jal equations in Stzct ion Ill. b. Two methods; are used toprvd

init ial conditions. In the first metlhod, an invisc id solurtion with ci I-

cul at ion for the floIw field at the given anc Ict of attack isohtaedu

SOB iteration as described in '.ppendi\ (-,. T1i is so] Xi*ion) thnprc'v id

initial1 value~s for the Nav ier-St oke ,,oluit ion. "!the second ted .nicjut UsL

the Navier-Stokes solution. for one anglec of attach aad rotate- thL .1c

byN the c h:ane in uncle of attack. The S..*t Of jilt ul vLr, for;_l11t:u

pressure is then used to start a Nay ioar-S~okes s-o]ut ion at tilt neLwac

at ta ck.

B . 71.Ir-bu I enc e " ode]_

The nu-ner icalI procedure whiichl OXlnet the d,: Vi sCOIi I; t u11- 11>2

model' descrbe i n Sec 't i On IIl i s disic sed. 't two I ;rv'cr rl2 I r :i.t1

airfoil surfac is plre.sented fol le)w(d !h-, the, far wokre !i.odt I. pA rc.h

usetd i n tile near wa i; tijen des cr ibed. TI edd; vis i (I di run i,

t ronL 'b0o1utI th f I W f i C I d is Al ln]at' ed at t 11, l'ej' ining o 1v 4 ii



SOB iteration is then used to determine_ tlie vtloc it ie- and r~sie at 1t,~

new time level. The eddv viscosity distribut ion is not changed durn: the

iteration process.

The inner )visco--ity computation from E-quation 6,f recuires_ Va-1luc Of

the tanzontial and normal veloc it': dvr ivat iVt<- a:nd thLe distance f ro::. t',

surface. These2 velocity derivatives are given by 1EqUationrs 70 andl 71 in

the transformed plane. They are evaluated using second order iccurat, central]

differences for both the transformation derivatives and the u and v \el-ocit-.

component derivatives; with respect to and '.The inner edd: vsc i i.-

ident icali'; zero at the surface ('=1) and need not be calculaited>e, r te

Tb0 correspond intg, veloc ity expression wl-ich is found] in tlhe extponcT,,: 0*

damping factor, Equation 62, miust be evaluated at the airfoil ~ i c

each rcontour in regions of turb~ulence. The derivatives wi ti re- t,

are approximated by second order accurate forward differences found 7a

Appendix B, and the derivatives with respect to - are evaluatec tiin:. ~-c o:c

order accurat-e central differences. The distance from lte suroc,

paint (i , j ) is measured( along the constant line_ r ep r s en tU

The freestream: chord Revnolds number appears throughout the c

result of writ ing the equations in nondinens ional form and] is an inpu:t pIn.-

Meter.

The adverse pressure gradient t urbulence moidel mdiiatoni2t he

triil ing edge region given byEr Uation fl5 is iMp] e('T- 7 C 'It . '~~

of thO> dist-;ance smeasured alon: the( airtoil ouractc :ro:. t r>

,4eplar~it i on poin t, is de_,termine.d 0' s:mn'tV I v11 1 : n:atc

onI th 't con.tou nes ICt to( tl U~ IrY i .

c r n r dj t- (I i 7- t :c t ' .'n t 14 1r r. 1' r,' r I

u ~ 1 tr . U at :~ : .. jo

r4



f i s thfen1 e VI ated( for each a pp I ic ab I- I 1, in~ T)-WY;ere t rai ! eu i se paLr,-

tion is detected. IThe inne r edd';. vis co-sity, is mu t ip] iced ILw theI re axa t i.

factor which adjusts the adverse pressure gradient inner edd.' viscus it:-

constant k

tL tcr thei i nn,-r ed dy v is o s ity is c omrp Uted(I, theC I Ti t in : t -ch n iq-

evaluit,,, the computed vallue. Thle inner eddy: viscosit-:- is pre'.ent<d fro:-.

decrta.sin, in the outward normal and downstream tan!ential flow,. direct ion.-

by comparing the value with previously computed values as given !I-th-

following sequencc.

~~ ~l an> -

The largoer value is selc ted! during eac : comparisoni. 1i1e initial in:.>-

eddy. viscos ity 1 4:.tn distribuition is calculatLed in. tliu attachedt euaai

li>r reion withi a favoraie pr.,ssure gradlient near L'o- airfoil leadinz d>

The- first or outwa- r-d direet.-n lmn condJiton is imnpo ed 'eru as we

1 lmt VI' c1 0f 1 '1, inne11r eddy ViSCOSi t- is t"I n com-.Pare,' with.1 tll

caCu0t. ut.er laser cdds: vi sco- it's. Vhh-enc-ver the inner ecu ':1 co>it

irt xceds- thje outer value, the outer edw viscos its1 is thenus>-:rth

rem a in in: locations outward from. the surface. Th~is wic insur.< .

tinul tv of_ the eddw, visrosit-s d istri.hut io:..

"Tht coniputat ion of the outer odd,.- vi scjsit': s :ven I,-,- icc l >

quirtes values for the local boundare% 1 a,.r edge vtelocity and .7 ~ sa:;

thi ckneS a de fined b,,- Equat ion -i. ha quant it i es arc aTa(:> foz:

contour whichi crosses the turb ulenit houndars l ayer . For a 1 ~ j In t ( V ;I

edge veloc its u 2is5 d e f ined t o hLe th1 1e rax i :,.ii n t an : un)t i ye -II I o

relIatLi ve to th1 e l ocalI surfaicett a , n t I i nt,. 'Phe tan,,cnt Ial I

b-. Egnat ion 6 ' and i evaluaited asdescri-' ~ o~;ein-s< r t h i- n

v i s c , i t': The hndar:- layer tlhickness is thenI ti:l U c oc . t

I rT fre,: t he 11rf 1 tv t Ie f f i rst pain T wla r ( thi ta aIi, t ; ;i v,



lusthan 0'. 911 u . Ihc dlisplace7en t. thickness is calculated u>:t rciv-;

zoid,! intecgrat ion where, th, limits of iut ugra: ion are ecri,

computed boundary layer thicknvsi-.

The resulting eddv viscosity distribution is neo-t noilic t Si!:111L~tt

the transition from-. lamnar to fully turbulint fio.- tr ansition 1_a itor

- vn by, Equation 67, is calculated as follo,- stt 'in:- Ic. i -

-or transition on the airfoil surface must be zpt. ifitA d <is beat i

specified by; des ignating the first grid point on th, Surfact. dow:stro,

wt.11 a-; the distance to that first grid point .'s h, rnto >

f tro-. the start ing location to a given lint is calcu' ateCV a:

to th dis tance. bettween the suc cessive su rfa cE ,r 'k d '~ P ci i t',on.:

t ions . Thu r, lax at ion f acto r '. i s dtermine d f ron thuL t ran i t iui

Ecquat ion 67 and' the df in ition of 1I; =3. is spucifliu wlk, !

t rans it ion d is tancec eq ual1s th ree f ourt hs- cf t he tc)t al t rans it ic~ I tn> ,t:

lI is iveLn 1hv

1f 2.>5 6,.

W , irt is thu" total acsunudL trans ition leno t'l. "11( ecu:% \i .,4 1

trihution com.puted previously on a 1 inc_ is n-uitip n _ I- od b

cons tant _' to obitain the revis;ed distribution, ofturun.o

hihinc ludes thei transition re, ion.

The final mod if icat ion rmadce to th~ceodd': viscos5ity iv tutiv<r

t hL upju r surfac u turhulent rug ,ioa involves. thet ( 0 C rL aSL oft r.2

the diret ion fro-. theu boundtr.- laver tovard thu far ficld'. 7. r-t t

f ac tor gi: :<utin3 modl ti S beha1'-vior. previoov- t i

hound ir: lay, r t~cn~- 11C (~I histaT'L L fr1o. thL' air> ti>i: t

(i07'W< t 02 < a IL are toe to compiie the in: tkr:. i t tL-1:..........

lo, It i n. 'I %rIl v In' of tho outer vd- is st airL 71111 L I i

t . c,.,rr< (0:.:n '. t lhe i nt or:-.it no: fac'to to ,1,t ai:, t . i i T



v iscos.;itv d ist r it)ut i: for trio turhuluant rts-itin ahux't- hAa:r::.-u>

at thc n t i me ste Up

the procudurc far computin:; tht u cd viscos it' distribution or!

1 i n,, across the t urK-u lent f 1 an' Z0n-. aha;L- the airfTail is ue e on

strka t)ar tL, a 1 inc thruK the 945 percent unord paint.- ct QO-tA

niutr thu tr ai i n:du deviate fro:-- thuc local,. nirn, I dirut ion in e :':c-

ao -19 . Far locat ions inl this Smnall rec ion, tire eddy.. viscosity i fn

h-susn:tliu 1a~t ccalculated value upstrean7 in a direction, tnet lc

1-lc cal cul at ion of the far 1jk od- -1icst6 lo >.

sjn , to tie- ca iuttion of thi enter la':-t r odd xicos- In t':

tulntc'con-tour>: are apr:t- oo- rt-aonu:al ta the TI' 2 Ifr

Utwas.: ' canltaurs are t us convenient lx do> nC -

ar uv, i n coa::qnut iI-- wo.- c hara ct e risti Cs .

1 an , c on ta.ur , the con -ponen!t of velIac i tv in te reostrears. di i

-:,u ,!',r thcu gr id po in ts spann in- thc- wltIc. ' ' e ' -inw'-':7

c v'eni 0' t'So ncL2n in th'e i s d (2r-. in d .,

S1 , ' tu yh e I'()( i t component'-s ch ic", occur on c i hc r Lc L1

%.Aul, arc 1o11:d and dsignatud th Il t u-,r and iovt-r t- ct 1, o

nu L'PL -a' ba- r -e 's of the wak-c 'ire ine as * c '>on r-

boc~ K t Vc oaity co m
pont nt inl theu Treostrear'. direcLion 'ira t red A ,2

thc uppor and lo >v'er u'doc Velour' ie-iC, rC~pCCtiVi 1".

n C, 7' ni niri- T a 1- cit to ' - 1 1r

,Is tnct uyppc r and. lowe2r walke tiricrrcss,-s ruspe(-t i

d t't ,-rincii t h u lim i ts -i in teug r it ion wren col, iba i i T. A -t -c I 11 ..,I

d i -,I i( i.tnt,, thi c'r,Ls es fror: hriaI ion -1 cc m ') r ' ' I ' ,I -;

nto:- r i o n a- at 4r 1'r t pa0int) L%"( I:-t 1t t, ' - DK t

ic-,,r arrd I1kr (I- iiacnn Ill a.->- ;I ir, I k1



t rapne:'. ida I nt, ',rat ion. lhe half wake. dli-,plaCe:A-t t h i Ck I I

the0 average. of the upper and lower displacemcnt t!Iick~nesses . T!e ar

wake edd% vic I is calculatud from Equat ion 73 using tic tlce

and an average-t of the upper lnd! lower edoc elci i'S

Th in term:i t t ,n -vf tc toLr f or e a c r idc.p nj t o. nan 'C 0ner C s : 1-

mined using thV- average \'alut- of the upper and lower wa'ke ri:sefc

in Ecuat ion 63. Thec local distance to each point is calculate.d fro- h

location Of MminMur. velocity alon, the , contouir

The" near Wake 17odel is numericall:: imple mented by cons iderioc, thennw

urliclent andl lo-,er liarboundary. lavers stePa-'atelv. T!he od':'iscc-4' t

d i-t r ibut ion, whi ch- is calculated near the trail inz ed.'e Of the1 a3 rfol :Iit

th,< 95 perccnt chord! locat ion, is e--.tended into the near wa'-E a10:::

d'irt -ion pairallIc to t'l airfo)il surface definted i': the 95 nerco"-t cl> rU'

and 09 percent chord grid point locations. Tie chord linc i~s teline of

e Xtension for the- bounda'ryayr in th)c near wa'ke. Thec , inces i 1 n

i i wi(f inc _he interaction zont, in the2 near walko,. .I o-itr

ac t ij,' d itac Z, 1 in Fiat ion 74 is basecI On telengthi of:. i'

laminar boundar': la'ver thick'ness computed at thle % pe2rL nt ch~ord catio

TI - bounda' ry a' thickne,,s is conputed h-o the same me thodusdre >

h 0upper surface boundar-:- laver. The distance VP alonL tlu c c r,'

inc x rom- th)e tr illing ed c to the location where the- far wak'< coo

ccc it'_ ccO&I ceins:,11 is: also calcutlated as a mul tipl e of thei aia tr

in,- -_d:z b ndarv; I aoer th,_ickne ss. The eady viscos itv in het n'e rac t:-

zone ic; compuntcd wi ti the two) calculated di. tances and tht, far a

viscos it' u' ln". I nationi 7P

E . F-or-ce- (l et t f cic-nts,

The for aiid mo-.en t exe rt ed on t he a ir f )i Ih1od,; 6' h~fIc. V

aire oval :t k( at the hod':v surf ac n , IngEua t ionis (,nadK



interails are evaluated using trapezoidal intteeration. TIhe product tLor:

in the iritegrands of the form (fg) are integrated by using products

averages, (f + f (p - c )/4 " The r derivatives are evaluated u(.in:!

second ordr accurate central differencos, and the ' derivat ives are for7:-

lated wit 1 second order accurate upwind forward di. ft! T' lift an: -

drag coefficients arc calculated by adding the components of x cn. ' direct;:>

force coefficients in the normal freestream (St' degrees counterclock-ise) n)

freestream directions, respectively, using Equations .13 and P.14.

The alternate technique based on the control volu:U analysis in

Appendix P for computino the forces on the airfoil bodv numeric v

implemented in a similar manner. .c lorce coefficients in tie :.: an:

directions for a two-dimensional control volume defined b: on , ]in- art

given U' Equations Si and 84, respectively. 'Ye line integrals at-

computed with trapezoidal integration using products of avera es. 7,1(

derivatives are evaluated with second order accurate central differences.

7!,C , derivatives are evaluaLed with second order accuratc centra i-

ferences on the interior ' lines. Second ordtr accurate npc r:-c s

are used to approximate the ' derivatives on the hod and ouer

lines. The area integral is also evaluated usino trapezoida. int'cot ion.

The Jacohian for an area element bounded hy the i and 1+1 ii-e n -]

and j T- lines is calculated by taking the average of tie ;a coLian 'a1ucs

previously computed for the viscous ter, in the Iin, integrulsat t' t'r-

responding se4-,cnts on the j-l and j ' I in.s. Tl. ,iro. i

computed for hot n and n-i tir. intervals us 1in the prey'iout ]', ck,-')1,..d

flow field value.s. The time dUrii itv is then cvaluatud us $I
order acconrate ha: tward d f fcre.:;:e

(1 -!



-1 IS C-L'SSI 0-, RKES ULTS

Numerical sal ut-ions far two-dimens ional incompressible tur!-;!-><

viscous flow aver a N ACA (02 airfoil suction are olbtainedl usin: h-

impl icit finite difference method previously described. Phe PAP( P12

airfoil section is chosen because of its widespread use as a test case

in bothi experimental and computatijonal1 work (65, 66) . The solutions are

for angles of attaclt cf 5 7.5S0 , 9.5~ and 11.50 at a ch~ord. b'e\nolJds-

numoer ot 170,000., This 1 cvnoids number is seetd for co, parisor with;

bothi previous NACA data (Sc an for data- obtained, as pa-rt of th-is invest i-

gation at the Air Foroe- I . J . Sciler Research, Labcrator: (-

The- numerically generated! bod-fitted c~oordlinat< systei:. which wa

useLd for each sa'ution is presentedl. The success iover-e

(SCOT) ierat i i numerical parameters and COnve%1r,:,1Ctn c r. r ia %-

thie steajdv state converg-ence criteria arc then d1use .7 xJ

and press--urc fields and streamline contours obtained from. thenv ril

s;olutions are ex-amined. The calculated laminar separation buh l artc

teris:tics art- compared with empirical results. The posit-ion at tian.- ti

to turbulence and! the transition length relative to the sepa rat ion bu11" 1(

location are, discussed . The- computed airfoil surface meain press ure di r i -

butions are compared with bothi an nv icid solut ion ande eimen l u

'The numerical lx prod icted lift and drac, forces ex-erted I,,. tht flowf !iId 'I'

the airfoil are- presented along with aval lablt- exierim.ent-11ean~ o

The effect- that the place7nen t and! tyvpe of imposed far fit Id ncr

condit ions have- on th(' n1umeIrical solution are discussed . Ti> en it j'. t%

of7 the nuimer ical solution to a-rid sine. is examined(!



The curvilinear body-fitted grid shown in Figure 3 is numerical 1v

generated using boundary layer parameters for the attraction of ' con-

tours towards the airfoil surface and linear interpolation for wake.

resolution given by Appendix C. The Blasius series flat plate chord

Reynolds number of 200,000, a nondimensionalized boundary layer ed-<.

velocity of 1.2, and seven grid points specified in the boundary layer

are used in the , contour attraction technique (7). The distribution o'

airfoil surface points is accomplished with Equation 26 where Al 0 ,

A2 = 0.4, and A3 = 1.0. Seventy-one . or surface points together -,it!.

forty-four , contours are used. The transformation difference equten

Equations 85 and 86, were then solved using SOR iteration. The optin:r:

local acceleration parameters varied between 0.8 and 1.5 throughout th- fX.:

field with essentially no chance in the local values after 25 iterati:.

After 350 iterations, the maximum errors in the solution for both x and

y were less than 10- 4 and occurred near the outer boundar'. above t le

airfoil. Additional 7 lines were added in the airfoil wake region usinl:-

the interpolation method described in Appendix C. Eight grid points

(four at a time) were inserted on the rounded trailing edge. Table r.1

gives the : and , indexing for the final 79x 4 4 grid shown in Ficcrc "

and the equivalent indices for the 7]x44 original grid.

Th airfo' ] is thus defined by a total of 79 points. Levcn ri:

points define the first 5 chord nose region and 17 points ar- useJ to d.-

fine the rounded trailinc edce. 2h: maximu:. distance !betwe ' . 
5-,

surface grid points is 5 of the chiord. The lines irt ers.t t surf,

contour within 10 °, of the local normal direct ion (:x, pt in the la. t

chord region near tho trailing edge.

The SOPi iteration parane ter:, and convtergencLe t.riteria wh ;ic ar rt ci ir

b the nimuerc il inpl icit procedure are similar for e.eh aol a- t,



solution. The accleration parameters had values of I.() for the velocity

components, 0.9 for the surface pessure, and 1.10 or 1.15 for field pressurv .

The larger value of was used at 9.5' and 11.5' a.gles of attack. The

convergence criteria for the SOR iteration required that the maximum change

in the relative magnitudes of u, v, and p for all locations be less than

1.*. This criteria was relaxed to 5" for the 9.5' and 11.5' cases. 'hirec

iterations per time step were the ma:imum necessary during! most of eac-i

computed case. For the 9.5' case, the approach to the steady state solu-

tion was re-run with - = 0.95 and - = 1.10 for two characteristic tires.~pb p

An additional iteration per time step was required to maintain the a:.o,

error tolerance. Computed values of lift and drag were virtually ident ical.

Although implicit SOR methods have been shown by linear stability

analyses to be unconditionally stable, convergence at a given timc, rc-

quired a small time step tt 0.001. The analysis in Appendix 1 based

on linear matrix theory indicates that the diagonal dominance of the set

of finite difference equations given by Equations 92 an] 93 Fas a defin-

ite dependence on 1/It. Diagonal dominance is a necessary and suffiil.it

condition for convergence (81) of constant coefficient linear sostvos<

using SOR iteration. Although this system of equations !as lowt2 r ordt- r

nonlinearities and variable coefficients, the order of magnitude stud-

of Appendix F indicates convergence if the most stringent r, quiremont

ft I O.(lr03 is applied. A constant time qtep equal to 0.0505 waue

for each solution. No convergence problems were encountered.

The finite difference method described in Section ]V is a tinc -

Pendent technique. The solution is advanced in timc b 't incronont, ,

The numerical solution was considered to have reuaheLed a stead: state . 1..l

clan Ooer in th, computed values of the lift and drag coc Ificit-nts wor c 1..

then I' over one charcter.stic or nondir ,nsionaPl timn pcri,.. j . t :v



state solution required three to six characteristic time periu~d and I r,.:

two to four hours of CPU time on a CDC CYBEK 750 computer.

The numerical solution of the mean flow field near the airfLij si c-

tion at each angle of attack is presented b using strearline contours,

velocity field vectors, and pressure contours. The mean , streamline, con-

tours are shown in Figures 4 through 7. A small lam-inar separation huhlie

on the upper surface with negligible trailing edge separation is seen in

Figure 4 for x = 5'. For an increased angle of attack equal to 7.5', te

separation bubble has decreased in size and moved forward toward the leading/

edee of the airfoil. Figure 5 also shows the turbulent trailin, ede separat io

region which has also moved forward. The trailing edpe separation rL-ion

has grown significantly and has progressed to the quarter chord poitfion

when the angle of attack has reached 11.5'. This behavior is topi'all:

observed during trailing edge stall (72).

The velocity field vector plots presented in Figures 8 throu,,., ]]

also illustrate the phenomena discussed above. In addition, a smni sc!'.

clockwise rotational motion is observed in the rear portion of th trailinst'

edge separation region. A circulatory flow pattern within the laminar .,-ara-

tion bubble is seen for = 5 " in Figure 8. The boundary la.er ncar the.

leading edge for each angle of attack contains at least five -rit point-

along each contour while approximately ten points resolve the lower

surface laminar boundary layer near the trailing edge. "Ii.s num!,er 'i' jel.t-

should be sufficient to resolve the primary features;. 'lih pressr -

tours neat the airfoil in Figures 12 through, 15 clearly sho, -pai

regions of low pressure, above the a i rfoil and hi h pr ,r:it- e 1'( the -

foil as tin, andL- of attack increases. The larg, pressur v;ar ia i TI aI

the upper surface suction peaks are also observed . "l, ic * I

indicate that only sna.ill pr,,ssure variations cc r in the wokk !',r ,!,

ans, 1 c a t t;a 11. n sm' t i and T: ri1011 k-N, m i r i Id I I t 1 ' 0-



pressure field is in sharp contrast to the large oscillator results

obtained by Hodge (7) for laminar flow.

For a moderately thick airfoil with a smooth surface in a flow

with a low freestream turbulence intensity, the lam-nar houndary laver

near the leading edge can separate upon encountering a stror,, advers

pressure gradient. Subsequently , sear laver instailitie c tr csiaut

transition to turbulence. The increased mixing may reattach thc shear

layer and thereby form a separation bubble. The formation of separa!-

tion bubbles and their relationship with the stalling characteristic

of airfoils at various Reynolds numbers have been investigated by

Gault (85), Gaster (86), Hoad, et al (87), and Arena and "utller (,<>

The laminar separation bubble has been observed evperimental:v b-, (;re'Or.

and O'Reilly (89) for the 1.ACA 0012 airfoil over a large ranc, o

Reynolds numbers. These experimental and empirical results will be U,-sed

to compare with the numerical solutions.

In this investigation, the beginning of turbulent transition on

the upper surface of the airfoil and the transition length have been h:2-,

on the closure of the laminar separating shear layer. The surf ace man

pressure coefficients for : 5' and 7.5' presented in Figure> If) a.,l

17 clearly show the laminar bubble constant pressure re,-ion, don'otr~ :

of the suction peak, followed by a rapid recovery. Transit ion in tl

nui-erical solution occurs near the downstream side of th bul It ,':t rt

the steep pressure recovery begins. This phenO:rkenon has I,.cn r ! .V

Wa11is (9()) and Arena and .Mueller (88) . Vhe chord I ovat j i-F

start of transition x and full turbulence x 1 re-la'live t tL -
t

and reattachbe nt points of the bubble, x and :r, respc(ti\',

in Table- I. For the sin,allcr angles of attack, reattal:,nt ,, orEv

prior to, attaInin:', fully turbulent flow. Tlis ,ehir Li, -e -

cri r nto l1v ot .rv'd I,-. Arena and .M-i.l r (V ii tlt ii I .: .



TABLE I Computed Characteristics of Turbulence Near

The Airfoil Leading Edge (x = -0.5)

(Deg) xS  x t  xR  T

5.0 - 0.42 - 0.24 - 0.15 -

7.5 0.47 - 0.42 - 0.38 0.35

9.5 - - 0.48 - - 0.40

11.5 - - 0.49 - - .48

TABLE II Computed Laminar Separation Bubble Characteristics

,' (Deg) M H Re, ReSS LB '

5 .124 3.1 680 .2 .0025 .27 -.0021

7.5 .091 3.2 540 268, .0 13 . W19 -. 02

6.i



number flow study.

The computed values of several parameters at separation for botli

= 5' and = 7.5' cases agree with empirical results and are prsentec

in Table II. The pressure gradient parameter , 
- Re d Id 

in nondinensional variables, where is the momentum thiickness, ankc

is arclength, compares favorably with the laminar separation criteria

of Curle and Skan (91) given by > > 0.09. The shape parame:ter i 2

*/ takes on values of 3.1 and 3.2 at laminar separation compared with

an average value of 3.5 reported by Curle and Skan. The Peynolds n1m1bLr

at separation based on the displacement thickness (R,., ) has a valuc

greater than 500 and predicts a short bubble using the Owen-Elanfer (1-2)

criteria confirmed by Gault (85) and Crabtrce (93) . The bubble lenYt}Ll I-

is of the order 10 :* and decreases rapidly with increased angle of attack

as seen in Table II. This relationship also indicates a short bubble ((,0,

93) whereas long bubbles have lengths of the order 10 S (5,8). 'I1

assumption that laminar separation precedes turbulen' transition is vrii

with: the computed Reynolds number at separation based on momentum thIicknc:

Re S. Crabtree's (94') criteria indicates that transition has occurr(,! 1

Re S > 780 when P!S first reaches 0.09. Thus, the solutions corrcctl%, pr ict

that laminar separation occurs before trans ition to turiulencL .. " t tr,

lent reattachMent criterion for the bubble giveni b h<olbrt , ("-,) is -

( /u ) d!(Is > - 0.0059. Ibis criterion is also satinfic.s a , ine_ e -

Table 11II.

The, trnds discussed above, for PR and both, l unar;: ] "

numbers continue at the high:er angles of att;Ihk, 11, ''r, at :,. c ,

attack near stall the bulle length, decrti'. s to ;aout I hiorj ( , i I

is th ord ( of tV 'ont o ur sp) : in: n ,ti th , a i d .1)i, I, r d,

io.- a = 4. V and - ll. ( on-eqent1'. d(, r



set~n in Fi-tures 1S an" 19. The solutions become very sensitive to sxl

changes in the turbulent transition length "and starting: locat ion ': I F r

example, at ,=9.S0 with an initial transition location of xt =-. ,

a change in transition len,;th from 0.022 to 0.025 produced shieddin,

of b-ubbles, lame& pressure oscillations, and a sinificat '30' inc'r,.:.-<

in averag e drag compared with tije steady State So lution. IThI!e eXpe'rIm~:L lT'

pressure data were measured with diaphragm transducers capallet of measurin,

frequencies well beyond 5000 Hiz. No dominant frequency was olbserved.

H-jULIO, e t al (87) recentlv. observed a snail scale unsteadiness in a ht

rec ion near the surface of a NACA, 0012 airfoil at angle of ott ac"k. 11-

laser velocimeitter mean veloc ity' histograms for a certain reg toi near-tl

leading, edge exhibited dominant and small secondary mean v'eloc'ities. hit

et al suggest that this behavior may indicate an unsteadiness withIin !,

laminar separation bubble. The remaining flow field, however, was s

The numerical solutions presented for each angle of attach arc, thcL

result of aparametric study' whervteuprsfaerinfio

becat ion were varied in order to close the b~ubble and! m--ai.to ili tea,!',

In each casec, a furtheur increase in the transition lengthi or i'v' 'ei*" ' don-

stream of the start of transzition resulted in a non-physical r-

motion propas,:ated downcstrea:: with an accompanied large inlcrta ', iii dr

Thet -oodl agreement betweeni the( calculated and em piriteal >ep):iat i

eharacteris t ics indicates: that tht- Origini of tuirbiilenc- on!- thVu - -- i

faicc is; sot is foetori ly modeVlCleO

Compult ed !uin dary J tr vt I o( it. p rolf iIt s it ou r t a t in in :,

upper suirfaCe arel Compared wi ! two st. o 0f ho0t 'I-ir o1" 1iUt

Fi!it- '- throu 123 The profiles were m asulre, 210. ' '- : t, K tt th1l

1u)cat ion'- )n ('I)n-i~tanL I in c ao ,ted ;p r a 1 it P-

!IlIrd. 7 hw rr Ie< ,ir, Tlnri]" e- ion. tII i'I 1



Surface to wtre thU ta aioL velocit': fir. t iitt !ir( -0 tK

ed,4e 'e Ioc it v . S i oji I ick-ant M11C ot Ua t 10:1 r at i092. I>

detec tced experinntal ly at t ha in n cr do:, a pa o : I )c. a:-:r a

throuch' four hi d ica:a the p resen:a ofat rO:.r

No f luc tuatr ion wtr, olbstrvad- ill t ha Io.:r ,ur' a,- 1:arI:

th, C$ cho rd i oat ioTA. I i s rcs Lt jprC)%'id. j) 'l

thItk- assoum-t ion th at the low er st IaC e bhoundarIr r, w r I::

the presence of the favorabia pressure grad ient al. ~ m

under investica!tiotn. The calculated hotindarv laver )Ptc s '?

s t r eaz;. compa red, with t he exp t-r imen talI p ro i I

c aus--ed by gr i,2 boundary Ilayc r re ;o 111t r. ror r U'" 9

Iby dcl -i iceci cs in hatuh-uillno moUlelI. 'i" e ho* tei r'. ' 0

matud ce:perimental arror of 5A
11ae boundary 1aver on the upp~. or sn1 trfa.~crc tofr.

wake downstream7 of the airfoil . k:'k 1 o:v-1 ;rf >1 :r1. ,

Cations of 0.58, 0.79, aind 1.54. for eachI anclt ttc arL .

2!4ia:d throuh 41?7. Thle trailing cdg ,s lociii., a t ml'.~1 ;

f i Iles are mexa-ured alIon L c orstt 1 ma11, tO I OL r1 in tn 7:2

ehordl ma in . Thec thicker numerical upper surface o 'r ~

down,,tr uam . Th e c-,onno t ed l arge var i at ion- st o t I ,kL , r ti

of the wakC, wIlij1 OP com from the lower surface hound-tr, Iiatr ii

ii!,r t-emaen t w ithI t he h o t w ire aln enOMet rv mea - ir eme t i- e 7-'a 1

obta in( d at ,,rid p0 ints us in; the onil ci al 71N. vr*5 i

s c)I t ions watrec obta ine2d f c , the 7 9', P cr d f4 dC -

k e emhuIL vle I t th t sakl' 11e di isp I aaCL 7 1'n)t andl >1-(, I .I .

approximattel% con- 1tant vilues withiln 15 of LAU". a the I 72

chord doc-ta:of tht traiIln:, dgi he wur 'p k

,wi'rltraaia trt i nd at vivti is. 40$. I.



1 7)

3jC :"0Ul21 Ir 11 uvmut ra cak ( na tr u tr

r 2 C 7 27t-, t 0er .;e d

a 'I i trIt us ti rapis ua 'N. n orondlien> 10 Ii an' , i t vt tO*

(iesthfup~ and zic -(1)~ fort:._ a f NACA - nari vinC' uar vio

tudes of the order 0.01 have been observed (84', 9121 in theit ne ar %,a1ce, an:

we re also obtained num ericlly where the contour values vzar- fcc-..

+ .flli i.ures 28 throu"n 31I.

TI L comn :uted surf ace mean, pres-sure d i st r 1hu t l ens fa'r aI fou r an:z

of ttck preS Tnttd in Fifgures- 16~ throughLl 10, forlycom;'arc i'

tie xperllentaldata (84) wh ich. hiace ain estimate ro f5-

inc iso i U( i.ut with imposed. Putta condition' wa- 00ii-fl'.pCId i n

ap ro ou C :0t ine, 2d in 'p pend ix C and is also shosm Sh col. .- , a.-7' 1-

Stoe ILaina dr S UcUtio 0 peak i s well I def ined and ncrase raid wi

an.-e o- awt ac . T2 .e lowe~r surface pressure pea )boh .vi.>no c:

an be(2 c:-e, bLroade(-r a>: thIie a n I of a ttac i n r>s. cio Se v

also senn th exne p mnt c daar' ~' t i @> i 1c

t 1ite expc r n m al daita whe2rek. th11e cuiirvait urec ra- p id I i. .. u

occrT- fuirt1.t r do1wusr-a' whewn Km cdw~ tthle<:,

Ti it- t d 'rten, t- pr.'bablvc au~t: fY t(- t1l tIth'il. woh



daita. were rmeasured in a wind tunnel with; a f reest rea:-. turltu iCONCL ip~te.:-i

a: anproxiI t clv 0.*5 comnpared with1 the unper turhed free2st rear. f tic(_ me -

erical solution. Some2 disau-reenent occurs in the trailing ek'e r,-._>-.

whore the computed result has a re prnucdfa ri teg a]

characteri 1st ic.

The computed inviscid surface pressure distribut io: cotisistek:rti';1

pred icts both a larger suction peak on the upper sur~ac, and 1, l 4 L

Sure peak on the lower surface. The discrepancies incre~ase: wit', ani:l~- kli

attaick . The inviscid solutions predict complete recover: aIt t,, traili:ec

ed.e, with a sta.-ation point and C I1. -. Ti, l a rg precs ,,c 'evt

in tie2 invise id and viscous solutions neair the airfoil no-L ar " re

wiic- ind '" tes an, adequate grid poinat d'istribution in r '

Anu exainati ion. o f t he exp e r imetal a nd inv isc-i d urf c r r

distribut ions "oer zero ang;le of attach civen in Figure 33 pro ide

addIitional inforrne Lion. Tuhe inviscid pressure distribut101 -

with th S fim-ite c"Ifferen.ce technicu_ in Appendi' C, 'r t u ,cr

and ,lor cur: aces are ind st incuishal-le. ThIis phIL . or

svrztnicres~ult came directr: Iron the numerical oclatic: anc "-<

speck: c edic 1 as a boundarx'- condition. Furtaermore, taLt_ nu. cc. cal ,

result is virtuall" identical with an inviscid solution (0 71 us in: 1

me , thdOf 'hodorsen (12) . i Thuxperimen tal data forhoi ura'e

asreet we] I withi the invi scid results wihindicates x n

that vl 'hi'' on the prssure d Lst onn je'Ir ii r,

we t rr;C r Z1 at "en', an l o attach. 1"i ir

eviclenc~ t J 'It n-ta aI fi o o csot ?;I

01 ' c ' s c') u 'a -c - fi c t~ - t! 1 ThI

w- r n : '-th., an.rc

'.1 1 ~ ~ ~ T' 1)t-t'- i. 'p1 t



revcals a sli lo!!,t suc t ion: peak Oil tijL' l)(r sun tt I-ae sitio ek

s u c --st t a t t he e xp e rimenal iIZ er Ii-C) an 011t tac 1 a: 1 Z too 2.' a

si iglt I yV) ilt ie u m: IntI Iew N.la t i on in ans r, is pL i e s1 n e tc

experimental zero was dettrm:ined !)x' m"anua I1"-'I d>: t i!t.. tc arfoil

Lit titude! until the pressur, djitr ibut ions on Vot'. s,!r, a es n c

c I if t i c le-n t sl ot a m ned f! rc t '.L prt sa p .r t uruc I r -

Stoke -o)lat ion , inv is c id resulIts- , and two se~ts of evnc~rio' o t- ot ar>

conrdin F i glurv 343e expe-rimnintaI re sU' t~ S

:r a nic; . aitt a-- f tec l -eDYi:t l cr L

coe Iffi cien t is rer t"n S 1cr abotr re~~u' T'

tive zero wac t t-urdc to '-(2 a. Ti is s 1a c cor re, tiao: i~ i r,

thu analy sis of thc noinn zero angleIt of attacke prt.or rio

results iilreal' presLnt experimen-7tal data

translati'ed C., in, the reic tLi iv0 direction in hsr

res-ult I 5 t were sir7i I ri- nub]- isbr-d incrrtifar. rc

tLwo-dimens i onal Iw ind t unnt co-rrec t ons in-,c ! d~ J> 1 ) cIr

I lockting, , and stra.i nc curvaiture ef fects we r, i nerv ist r

1 ow- peedwind nnncl correct ion- factors (CC ald 7 K 111cv.

2' :3'tunnolgrams tLry so.'re appled to th Ic .ptrvetlKt t1

accoiint for Iblockacet nd wall inrf Tiny .> C c0 r1- : O <

lt c c- 7 l an -i'l 1. 1.r Z

Pica~ h.- '-0 c-rr<

ran IT a t ai-' V . I-
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The NACA lift curve then flattens more rapidly near stall. These minor

differences may be explained by a larger freestream turbulence level in

the NACA results which tends to delay the turbulent trailing edge separa-

tion. Also, the major variation of the lift curve at small angles of

attack occurs for Reynolds numbers less than 106 (56, 89). Freestream

turbulence can cause more rapid transition and result in an apparent

freestream Reynolds number greater than the nominal turbulence-free value.

The computed turbulent Navier-Stokes lift coefficients for the

four angle of attack cases are in excellent agreement with the experi-

mental data as shown in Figure 34. The force components were computed

using trapezoidal integration to sum the total surface stresses obtained

from the flow field solution. The numerical results exhibit a gradual

decrease in slope with increased angle of attack similar to the Seiler

Laboratory data. This behavior is consistent with the data because the

numerical solution has a quiescent incoming freestream with a correspond-

ing smaller apparent Reynolds number. The significant effect that the

viscous separation in the trailing edge region has on the lift coefficient

for angles of attack greater than 8' is observed. The computed values

are within 5% of the experimental results. The lift coefficient was also

computed for each angle of attack using the contour momentum integral

method described in Appendix D. The calculated values differ by less

than 1% for n contour paths within one-half chord of the aifoil surface.

This result demonstrates the near flow field consistency in resolving the

lift force. The time dependent terms in Equations 83 and 84 always con-

tributed less than 0.5% of the total computed lift which indicates again

a converged steady solution.

Two inviscid flow predictions for the lift coefficient are shown in

Figure 34 for comparison. The numerical inviscid finite difference results

were computed with the second order accurate trapezoidal integration
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technique used in the viscous calculations. The linear airfoil theory

27 slope is included. The inviscid flow results over-estimate lift by

25% at an angle of attack of 5'. This discrepancy increases wILh angle

of attack because the viscous effects which induce stall are not pre-

sent in an inviscid calculation.

The computed drag coefficients for the four cases are compared with

available experimental data (56) in Figure 35. The force components were

computed using trapezoidal integration to sum the total surface stresses

obtained from the flow field solution. The drag component is in the

direction of the incoming freestrear.: flow. The rapid increase in the

drag coefficient which accompanies the smaller increase in lift at higher

angles of attack near stall is observed. Jacobs and Sherman (56) acknow-

ledged that the experimental drag data in this Reynolds number region

have error greater than the estimated + 0.001 for the larger Reynolds

number results. The agreement between the present numerical solution and

the experimental data is within ten drag counts in the region of the

maximum lift to drag ratio.

The presented numerical solutions for two-dimensional incompressible

turbulent viscous flow over airfoils were obtained with several parametric

studies. The effects associated with varying the turbulence transition

values and the SOR iteration parameters including time step size have

already been discussed. The influence of other turbulence model para-

meters, far field boundary conditions, and grid fineness on the numerical

solutions have also been investigated.

The turbulence model contains several parameters which can vary. The

effects that changes in these parameters have on the flow field near the air-

foil surface and on the values of lift and drag were examined. The value

of the nominal inner eddy viscosity parameter kI was increased by 20' at

a 50 ang.le of attack. The lift coefficient subsequently increased by 2*7
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while the drag coefficient increased by 5% or six drag counts. These

integrated effects are caused by the observed small increase of velocity

in the inner boundary layer on the upper surface. The outer eddy vis-

cosity parameter k2 was next increased by 50%. The result was an increase

in turbulent mixing with a corresponding thicker boundary layer. The

velocities near the edge of the upper surface boundary layer decreased

which caused an 8% loss of lift with no apparent effect on the calculated

drag.

Values for the constants in the inner eddy viscosity parameter k
1

relaxation factor given by Equation 65 were obtained from a parametric

study at an angle of attack of 11.50. This angle of attack was chosen

because the effects of the relaxation are significant only for angles of

attack near stall. A solution was initially computed -.,:ithout the relaxa-

tion factor f. The laminar separation bubble remained closed with

trailing edge separation beginning at mid-chord. The calculated values

for the lift and drag coefficients were 0.98 and 0.064, respectively. An

examination of the lift curve in Figure 34 reveals that this solution ex-

hibits the character of leading edge stall where an approximate linear

behavior is sustained until separation abruptly occurs. Leading edge stall

does occur for the NACA 0012 airfoil for Reynolds numbers greater than

about 500,000 (56, 89). Thus the mechanism for leading edge stall seems

present within the modified turbulence model. A numerical solution was

next obtained using the relaxation factor with a relaxation distance sr =

0.25 and a delay distance sd = 0. in nondimensional distances. The laminar

ubble remain closed, but the trailing edge separation region was signifi-

cantly larger and moved to within the 20% chord location (x = - 0.3). The

lift coefficient decreased substantially to a value of 0.8 while the drag

coefficient increased moderately to a value of 0.074. The final solution
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which has been previously discussed was calculated using distances s =
r

0.5 and sd = 0.1. The computed lift and drag coefficients became 0.84

and 0.068, respectively, and are in agreement with the experimental data.

The sensitivity of the numerical solution to these parameters has thus

been obtained. The last set of distance parameters was used in calcu-

lating the solutions for the other angles of attack. The onset of

trailing edge separation for the 5' and 7.5' solutions, seen in Figures

4 and 5, indicates that the relaxation factor was not activated. Thus

the relaxation model for parameter k I affects the flow field only near

stall where the pressure gradient approaches zero over a large portion

of the upper surface.

The relaxation distance WL2 in the near wake turbulence model given

by Equation 74 was also investigated. Numerical solutions were obtained

at 50 angle of attack for relaxation distances equal to 5 and 100 times

the lower surface boundary layer thickness near the trailing edge. No

changes in either the surface pressure distribution or the integrated

force coefficients were observed. In two recent near wake calculations

with similar relaxation models, Waskiewicz (98) used a value of 30 trail-

ing edge boundary layer thicknesses and Hasen (99) used 10 boundary layer

thicknesses. The relaxation distance of 5 boundary layer thicknesses was

retained since the agreement of the Reynolds stress field discussed pre-

viously was improved for this choice.

The effect on the solution of the placement and type of far field

boundary conditions should be considered in any computational work. In

this investigation, two types of boundary conditions at different loca-

tions were examined. The four angle of attack solutions that have been

discussed were computed using the freestream far field boundary conditions

described in Sections III.B and IV.C at a circular outer boundary of radius

10 chords. The effect of the far field boundary placement on an tnviscid t
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solution for Joukowski airfoils was previously accomplished (82).

This analysis indicated that a radius of 10 chords was sufficient as

discussed in Section IV.C. The effect of the boundary placement on

the present viscous solution was examined by using an alternate outer

boundary. The J = 40 n contour with a semi-major x axis of 4.77 and

semi-minor y axis of 4.64 was chosen as the new outer boundary because

it approximates a circle with half the previous radius. The numerical

solution was then obtained for .= 50 and compared with the solution

using the 10 chord radius outer boundary. The average values for the

lift and drag coefficients were identical. The solution with the closer

far field boundary had a small oscillatory behavior with variations in

the lift and drag coefficients of 1% and 2%, respectively. Further ex-

amination of the near surface flow field revealed that the laminar

separation bubble had a small scale unsteadiness which locally affected

the pressure field.

The far field potential flow boundary condition model developed in

Appendix F was next applied with the outer boundary locations of 10 chords

and about 5 chords in turn. This model approximates the small pertur-

bations from the freestream conditions for the velocity and pressure

fields at a large but finite distance caused by the presence of a body in

the flow field. In this approach, the upstream boundary conditions for

both velocity and pressure became the calculated values from the inviscid

potential flow model. The downstream boundary condition for pressure

also became the corrected value rather than the freestesm value. The no

change downstream boundary condition for the velocity components was re-

tained. The solution was calculated with the revised far field boundary

conditions at the 10 chord radius circular outer boundary. The boundary

conditions were initially updated every 200 time steps (0.2T) by using

the latest calculated value of the circulation. After three characteristic
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time periods T, the mean values of the lift and drag coefficients

were virtually identical with the previous freestream boundary

condition results. However, while the lift coefficient had variations

of less than 1% from the mean value, the calculated drag coefficient was

periodic with a period of 0.4T and variations of + 10i". Since the period

of the oscillations was twice the period of the boundary condition update

and the circulation was essentially a constant at this time, the outer

boundary conditions (except the no change downstream condition) were kept

at the current values and the solution was advanced 1.5 characteristic

time periods. At this time, the lift coefficient had a steady value of

0.425 and the drag coefficient became 0.011 + 2% (two drag counts).

These computed results are within 12 of the corresponding coefficients

calculated from the solution using the simple freestream conditions.

Thus the more accurate boundary condition which includes the effect of

a finite distance from the body induces very small changes in the computed

flow field near the airfoil.

The modified far field potential flow boundary conditions were also

used at the near-circular five chord radius outer boundary defined above

to obtain a solution again for a = 5'. After two characteristic times,

the outer modified freestream boundary conditions were held constant since

the lift coefficient had small variations less than 1%. The solution ex-

hibited a small oscillatory behavior similar to the freestream boundary

condition result even after four characteristic time periods. The lift

coefficient had a mean value within 11% of the freestream boundary condition

value with variations below 1%. The drag coefficient had the same average

value as the previous result, but the oscillations were larger with a de-

viation from the mean of approximately + 10"' (10 drag counts). The un-

steadiness was again observed to emanate from the laminar separation bubble.
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Small pressure oscillations propagated downstream on the upper surface

of the airfoil and were eventually damped out near the trailing edge. In

eaci case no changes were made in any of the turbulence or other parameters

during the computations. Small changes in the turbulence transition near

the bubble would probably prevent the unsteadiness.

The far field boundary condition study has indicated that the use

of the freestream boundary conditions at the large but finite distance

from the airfoil surface is sufficient for the computation of the near

surface flow field and force coefficients. Variations in the outer bound-

ary placement and the use of a more accurate far field boundary condition

had negligible effects on the present numerical solution.

The numerical implementation of the downstream no change boundary

condition was also investigated. Second order accurate central spatial

and upwind differences were used in separate solutions for an angle of

attack of 7.50. No difference (+0.017) was observed in the surface pres-

sure distributions or computed force coefficients between the two bound-

ary conditions. The computed velocities at locations across the wake on

the outer boundary for the two cases differed by less than 1%. The upwind

difference formulation was chosen because of the associated convective

properties.

The sensitivity of the numerical solution to the fineness of the

grid was examined. The 7.5' angle of attack case was chosen because

both the laminar separation bubble and a region of separated flow near

the trailing edge are present. A coarse grid was obtained from the 79x44

grid by deleting the odd numbered n contours except for the body contour.

The coarse 79x23 grid was a subset of the full coordinate system and was

used to study the effect of boundary layer resolution on the numerical

solution. The turbulence parameters 3nd SOR acceleration parameters were

unchanged from the previous solution. The coarse grid computation was
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carried out over four chacteristic time periods. The calculated values

for the lift and drag coefficients approached a "steady" periodic state

after two chaiacterisc times with a period of 0.6T. The mean value of the

lift coefficient, averaged over the last two characteristic times, became

0.606 + 2%" compared with the full grid solution value of 0.606. The

computed mean drag coefficient was 0.0260 + 15% compared with the 79x44

grid solution result of 0.0240. Values for the wake velocities in the

freestream direction along the outer boundary for each solution compared

within 1%. The unsteadiness was found to originate from the oscillating

laminar separating shear layer which forms the front portion of the bubble.

The edge of the boundary layer varied between the J=3 and J=4 n contours,

as defined by the 79x23 grid system, at the 1 chord location. This motion

also caused the bubble to vary in length and produced pressure oscillations

along the upper surface. This unsteadiness is probably attributed to the

reduced resolution of the bubble in the T direction. Similar sensitivity

has already been discussed concerning the resolution of the extremely

short bubble in the F direction at larger angles of attack.

The computed flow field near the airfoil and the calculation of the

force coefficients using the coarse grid are in agreement with the results

for the complete 79x44 grid. A quadratic Richardson's extrapolation on the

computed drag coefficients indicates an error of +0.0007. This agreement

indicates that the solution obtained with the full 79x44 coordinate system

is adequate to obtain +10 drag counts and therefore sufficiently approximates

the limiting numerical solution obtained from an extemely fine grid. The

coarse grid computation further indicates that the numerical multi-grid

approach (100) may be implemented for complex flows using general grid trans-

formations. The use of only one-half the grid points, for instance,

during most of the time marching procedure would significantly reduce

the computer time required for an equivalent numerical solution.
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SECTION VI

CONCLUSIOZS AND RECOMMIENDATIONS

Numerical solutions have been obtained for two-dimensional incom-

pressible turbulent flow over airfoils near stall. The time dependent

Reynolds averaged incompressible Navier-Stokes equations in the primitive

variables of velocity and pressure together with a Poisson pressure

equation are numerically solved. An algebraic eddy viscosity approach

is modified for separated adverse pressure gradient flows and used to

model turbulent closure of the laminar separation bubble and the subsequent

turbulent boundary layer. A deficiency in the standard model is detected

and corrected by using a "limiting" technique. A body-fitted coordinate

system is numerically transformed to a rectangular grid in the computational

plane. The set of transformed partial differential equations is solved

with an implicit finite difference method. Successive-over-relaxation

iteration is uspd to solve the system of linearized difference equations

at each time step.

Numerical solutions are presented for a NACA 0012 airfoil near stall

at a chord Reynolds number of 170,000. A short laminar separation bubble

located near the upper surface suction pressure peak is obtained. Computed

laminar separation bubble characteristics including the criteria for sep-

aration, bubble type, and turbulent transition agree with empirical results.

Surface mean pressure distributions are presented and found to compare

favorably with experimental data. The separation bubble is observed for

angles of attack of 5' and 7.5'. For larger angles of attack, the small

bubble essentially disappeared within the numerical resolution of the

streamwise grid spacing. The steep leading edge suction pressure peak is

well defined for each angle of attack. Velocity profiles at four stations



along the upper airfoil surface are compared with experimental results.

The experimental data were obtained at similar grid point locations

so that interpolation was not required. The calculated lift and drag

coefficients are in excellent agreement with the experimental data.

The lift coefficients are within 57,' of the experimental values near stall,

and the computed drag coefficients are within 10 drag counts in the region

of maximum lift to drag ratio. The effects of viscous separation on the A
lift coefficient curve which produces a maximum value are seen and con-

trasted with a numerically obtained inviscid potential solution with Kutta

condition. The observed phenomena of trailing edge stall is predicted

where the rear separation point moves forward with increasing angle of

attack.

The sensitivity of the numerical solution has been exarin.Cd in

several areas. A far field potential flow boundary condition which

modifies the freestream conditions for use at a large but finite

distance from the airfoil was considered for two outer boundary placements.

The study showed that the use of the infinite freestream conditions at an

outer circular boundary of radius 10 chords produces negligible influencC

on the near flow field and calculated values for the force coefficients.

A coarse 79x23 grid, compared with the 79x 44 grid, was used to evaluate

truncation error. An analysis of convergence for successive-over-

relaxation iteration predicts an upper limit on the time increment for

the implicit finite difference method. Numerical experiments confirmcd

this upper bound. Several parameters within the turbulence model were

systematically varied. The only significant sensitivity occurred

near the downstream side of the laminar separation bubble. Small chang:es

in turbulent transition length and location were found to significantlv

change the flow field. This sensitivity may be related to incipient

turbulent separation which results in failure to close the separation
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bubble. This leading edge stall phenomena is observed at higher

Reynolds numbers for the NACA 0012 airfoil.

The agreement between the numerical solu, ions and the experimental

data and empirical results indicates that the eddy viscosity approach

modified for separated adverse pressure gradient flows adequately

models the turbulence on the upper airfoil surface. The near stall

airfoil aerodynamic characteristics are consequently accurately pre-

dicted by the numerical method.

The results of this investigation have suggested areas for further

research. A more exhaustive study of the laminar separation bubble

should be accomplished to better understand the phenomena of leading edge

stall. The computation of a geometry with detailed experimental results

for this purpose is desirable. Further research in adapting the multi-

grid technique would significantly increase the computational efficiency

and appears feasible as a result of the coarse grid calculation. Turbulence

modelling is an area of substantial intere3t and should be pursued in

conjunction with experimental investigations. The improved accuracy of

current computational aerodynamics also indicates that the errors in ex-

perimental measurements should be analyzed in a more rigorous manner so

that comparisons can be better evaluated. The method should also be

employed in time dependent problems to further exploit the time marching

technique.

85



REFERENCES

1. Winslow, Alan M., "Numerin'i '_IuLiOn of the Quasilinear Poisson
Equation in a Noiiuniform Triangle Mesh", J. Comp Pl vs., 1 (19(,()

2. Chu, Wen-Hwa, "Development of a General Finite Difference Appro::i-

mation for a General Domain, Part I: Machine Transformatio.",

J. Comp. Phys., 8 (1971), 392.

3. Amsden, A. and Hirt, C., "A Simple Scheme for Generating General

Curvilinear Grids", J. Comp. Phys., 11 (1973), 348.

4. Thompson, J. F., Thames, F. C., and Mastin, C. W., "Automatic Numerical

Generation of Body-Fitted Curvilinear Coordinate System for Fields
Containing Any Number of Arbitrary Two-Dimensional Bodies", J. Co7.

Phys., 15 (1974), 299.

5. Thompson, J. F., Thames, F. C., and Mastin, C. 1., "Boundar-Fit ted

Curvilinear Coordinate Systems for Solution of Partial Differential

Equations on Fields Containing Any' Number of Arbitrary Two-Dimen-

sional Bodies", NASA-CR-2729, 1977.

6. Thompson, J. F., Thames, F. C., and Mastin, C. W., "TOfCAT- A Code

for Numerical Generation of Boundary-Fitted Curvilinear Coordinate

Systems on Fields Containing Any Number of Arbitrary Two-Dimen-

sional Bodies", J. Comp. Phys., 24 (1977), 274.

7. Hodge, J. K. and Stone, A. L., "Numerical Solution for Airfoils Near

Stall in Optimized Boundary-Fitted Curvilinear Coordinates", AIA.1 .

17 (1979), 458.

8. Steger, J. L. and Sorenson, R. L., "Automatic Mesh-Point Clusterin,

Near a Boundary in Grid Generation with Elliptic Partial Differential

Equations", J. Comp. Phys., 33 (1979), 405.

9. Sorenson, R. L., "A Computer Program to Generate Two-Dimensional Grids

About Airfoils and Other Shapes by the Use of Poisson's Equation",
NASA-TM-81198, 1980.

10. Mastin, C. W. and Thompson, J. F., "Three-Dimensional Body-Fitted

Coordinate Systems for Numerical Solution of the Navier-Stokes
Equations", AIAA Paper 78-1147, 1978.

11. Meyder, R., "Solving the Conservation Equations in Fuel Rod Bundles

Exposed to Parallel Flow by Means of Curvilinear-Orthogonal Coordi-
nates", J. Comp. Phys., 17 (1975), 53.

12. Theodorsen, T. and Garrick, I. E., "General Potential Theory of

Arbitrary Wing Sections", NACA-TR-452, 1933.

13. Ives, David C., "A Modern Look at Conformal Mapping Including MIultiply

Connected Regions", AIAA J., 14 (1976), 1006.

86



14. Gibeling, H. J., Shamroth, S. J., and Eiseman, P. R., "Analysis of
Stong-Interaction Dynamic Stall for Laminar Flow on Airfoils",
NASA-CR-2969, 1978.

15. Eiseman, Peter R., "A Coordinate System for a Viscous Transoni
Cascade Analysis", J. Comp. Phys., 26 (1978), 307.

16. Eiseman, Peter R., "A Multi-Surface Method of Coordinate Generation",
J. Comp. Phvs., 33 (1979), 118.

17. Eiseman, Peter R., "Coordinate Generation with Precise Controls",
ICASE Rept 80-16, 1980.

18. Boussinesq, J., "Theorie de l'ecoulement tourbillant", Mem. Pres.
Acad. Sci. XXIII, 46 (1877).

19. Prandtl, L., "Bericht uber Untersuchungen zur ausgebildeten Turbulenz",
ZAMM., 5 (1925), 136.

20. Cebeci, T. and Smith, A. N. 0., article from Computation of Turbulent
Boundary Layers, AFOSR-IFP Conf., 1 (1968), Stanford Univ. Press,
346.

21. Mellor, G. L. and Herring, h. J., "Two Methods of Calculating Tur-
bulent Boundary Laver Behavior Based on Numerical Solutions of the
Equations of Motion", Computations of Turbulent Boundary Lavers,
AFOSR-IFP Conf., 1 (1968), Stanford Univ. Press, 331.

22. Patankar, S. V. and Spalding, D. B., article from Computations of
Turbulent Boundary Lavers, AFOSR-IFP Conf., 1 (1968), Stanford
Univ. Press, 356.

23. Van Driest, E. R., "On Turbulent Flow Near a Wall", J. Aerospace
Sci., 23 (1956), 1007.

24. Cebeci, T. and Smith, A. M. 0., Analysis of Turbulent Boundary
Layers, Academic Press, NY, 1974.

25. Launder, B. E. and Spalding, D. B., Mathematical Models of Turhu-
lence, Academic Press, NY, 1972.

26. Prandtl, L., "Uber ein neues Formelsystem fur die ausgebildete
Turbulenz", Nachrichten von der Akad. der Wissenshaften in Gottin !en,
(1945), 6.

27. Glushko, G. S., "Turbulent Boundary Layer on a Flat Plate in an
Incompressible Fluid", NASA-TM-F-10080, 1966.

28. Mellor, G. L. and Herring, H. J., article from Computations of
Turbulent Boundary Layers, AFOSR-IFP Stanford Conf., 1 (196s),
Stanford Univ. Press, 247.

29. Wolfshtein, M., "The Velocity and Temperature Distribution in One-
Dimensional Flow with Turbulence Augmentation and Pressure Gradient",
Int. J. Heat Mass Transfer, 12 (1969), 301.

87



30. Bradshaw, P., Ferriss, D., and Atwell, N., "Calculation of Boundary-
Layer Development Using the Turbulence Energy Equation", J. Fluid
Mech., 28 (1967), 593.

31. Nee, V. and Kovasznay, L., "Simple Phenomenological Theory of
Turbulent Shear Flows", J. Phys. Fluids, 12 (1969), 473.

32. Kolmogorov, A. N., "Equations of Turbulent Motion in an Incompressible
Fluid", IZV Akad. Nauk. SSSR, Ser. Fiz., 6 (1942), 56.

33. Ng, K. H. and Spalding, D. B., "Turbulence Model for Boundary Layer
Near Walls", J. Phys. Fluids, 15 (1972), 20.

34. Rotta, J. C., "Statistiche Theorie nichthomogener Turbulenz", Z. Phvs.,
129 (1951), 546.

35. Saffman, P., "A Model for Inhomogeneous Turbulent Flow", Proc. Roy.
Soc. London, 317 (1970), 417.

36. Wilcox, D. and Rubesin, M., "Progress in Turbulence Modeling for
Complex Flow Fields Including Effects of Compressibility". NASA-
TP-1517, 1930/.

37. Jones, W. and Launder, B., "The Prediction of Laminarization with a
Two-Equation Model of Turbulence". Int. J. Heat Mass Transfer,
15 (1972), 301.

3S. Donaldson, C. and Rosenbaum, H., "Calculation of Turbulent Shear
Flows Through Closure of the Reynolds Equations by Tnvariant
Modeling", NASA-CR-128172, 1968.

39. Hanjalic, K. and Launder, B., "A Reynolds Stress Model of Turbulence
and its Application to Thin Shear Layers", J. Fluid Mech., 52 (1972),
609.

40. Kolovandin, B. and Vatutin, I., "Statistical Transfer Theory in Non-
Homogeneous Turbulence", Int. J. Heat Mass Transfer, 15 (1972), 2371.

41. Ferziger, J., "Large Eddy Numerical Simulations of Turbulent Flows",
AIAA J., 15 (1977), 1261.

42. Walker, R., "Numerical Solution of the Navier-Stokes Equations for
Incompressible Viscous Laminar Flow Past a Semi-Infinite Flat Plate",
MS Thesis, Mississippi SLate University, 1974.

43. Pai, Shih, Viscous Flow Theory, Part I Laminar Flow, D. Van Nostrand,
N Y, 1956.

44. Thames, F., "Numerical Solution of the Incompressible Navier-Stokes
Equations about Arbitrary Two-Dimensional Bodies", Ph D Dissertation,
Mississippi State University, 1975.

45. Mehta, U. and Lavan, Z., "Starting Vortex, Separation Bubbles, and
Stall: A Numerical Study of Laminar Unsteady Flow Around an Airfoil",
J. Fluid Mech., 67 (1975), 227.



46. Reddy, R. and Thompson, J., "Numerical Solution of Incompressible
Navier-Stokes Equations in the Integro-Differential Formulation Using
Boundary-Fitted Coordinate Systems", AIAA Paper 77-650, 1977.

47. Sankar, N. and Wu, J. C., "Viscous Flow Around Oscillating Airfoils -
A Numerical Study", AIAA Paper 78-1225, 1978.

48. Sankar, N. and Tassa, Y., "Reynolds Number and Compressibility Effects
on Dynamic Stall of a NACA 0012 Airfoil", AIM Paper 80-0010, 1980.

49. Briley, W. and McDonald, 11., "Solution of the Multidimensional Com-
pressible Navier-Stokes Equations by a Generalized Implicit Method",
J. Comp. Phys., 24 (1977), 372.

50. Sugavanam, A. and Wu, J., "Numerical Study of Separated Turbulent Flow
Over Airfoils", AIAA Paper 80-1441, 1980.

51. Harlow, F. and Welch, J., "Numerical Calculation of Time-Dependent
Viscous Incompressible Flow of Fluid with Free Surface", Phvs.
of Fluids, 8 (1965), 2182.

52. Hirt, C. and Harlow, F., "A General Corrective Procedure for the
Numerical Solution of Initial Value Problems", J. Comp. Phvs., 2
(1967), 114.

53. Hodge, J. K., "Numerical Solution of Incompressible Laminar Flow
About Arbitrary Bodies in Body-Fitted Curvilinear Coordinates",
Ph D Dissertation, Mississippi State University, 1975.

54. Ghia, K., Hankey, W., and Hodge, J., "Study of Incompressible Navier-

Stokes Equations in Primitive Variables Using Implicit Numerical
Technique", AIAA Paper 77-0648, 1977.

55. Chien, J., "Vorticity-Stream Function Formulation of Compressible
and Incompressible Turbulent Internal Flows", AEDC-TR-79-13, 1979.

56. Jacobs, E. and Sherman, A., "Airfoil Characteristics as Affected by
Variations of the Reynolds Number", NACA Rept 556, 1937.

57. Deiwert, G., "Numerical Simulation of High Reynolds Number Transonic
Flows", AIMA J., 13 (1975), 1354.

58. MacCormack, R. W. and Paullay, A., "Computational Efficiency Achieved
by Time Splitting of Finite Difference Operators", AlAA Paper 72-154,
1972.

59. Steger, J., "Implicit Finite Difference Simulation of Flow About
Arbitrary Two-Dimensional Geometries", AIAA J., 16 (1978), 679.

60. Beam, R. and Warming, R., "An Implicit Finite Difference Algorithm
for Hyperbolic Systems in Conservative-Law-Form", J. Comp. Phvs.,
22 (1Q76), 87.

61. Walitt, L., King, L., and Liu, C., "Computation of Viscous Transonic
Flow About a Lifting Airfoil", AIAA Paper 77-679, 1977.

89

L~. _ _



62. Trulio, J., "Theory and Structure of the AFTON Codes", AFWL-TR-66-19,
1966.

63. Cebeci, T., Smith, A. M. 0., and Mosinskis, G., "Calculations of
Compressible Adiabatic Turbulent Boundary Layers", AIAA J., 8
(1970), 1974.

64. Shamroth, S. and Gibeling, H., "A Compressible Solution of the Navier-
Stokes Equations for Turbulent Flow About an Airfoil", NASA-CR-3183,
1979.

65. McAlister, K., Carr, L., and McCroskey, W., "Dynamic Stall Experiments
on the NACA 0012 Airfoil", NASA-TP-ll00, 1978.

66. Bland, S., "AGARD Two-Dimensional Aeroelastic Configurations", AGARD-
AR-156, 1979.

67. Abbott, I. and Von Doenhoff, A., Theory of Wing Sections, Dover Pub.,
NY, 1959.

68. Chorin, A., "Numerical Solution of the Navier-Stokes Equations",
Math. Comp., 22 (1968), 745.

69. Shang, J., Hankey, W., and Dwoyer, D., "Compressible Turbulent Boundary
Layer Solutions Employing Eddy Viscosity Models", ARL 73-0041, 1973.

70. Coles, D., "The Law of the Wake in the Turbulent Boundary Layer", J.
Fluid Mech., 1 (1956), 191.

71. Jobe, C. and Hankey, W., "Turbulent Boundary Layer Calculations ir.
Adverse Pressure Gradient Flows", AIAA Paper 80-136, 1980.

72. McCullough, G. and Gault, D., "Examples of Three Representative Types
of Airfoil Section Stall at Low Speed", NACA-TN-2502, 1951.

73. Bachalo, W. and Johnson, D., "An Investigation of Transonic Turbulent
Boundary Layer Separation Generated on an Axisymmetric Flow Yodel",
AIAA paper 79-1479, 1979.

74. Baker, A. and Orzechowski, J., "An Interaction Algorithm for Prediction
of Mean and Fluctuating Velocities in Two-Dimensional Aerodvna:ic
Wake Flows", NASA-CR-3301, 1980.

75. Dhawan, S. and Narasimha, R., "Some Properties of Boundary-Laver Flow
During the Transition from Laminar to Turbulent Notion", J. Fluid
Mech., 3 (1958), 418.

76. Narasimha, R. and Prabhu, A., "Equilibrium and Relaxation in Turbulent
Wakes", J. Fluid Mech., 54 (1972), 1.

77. Green, J., Weeks, D., and Brooman, J., "Prediction of Turbulent
Boundary Layers and Wakes in Compressible Flow by a Lag-Entrainment
Method", ARC-R/M-3791, 1977.

90

-- _ og



78. Inouye, M., Marvin, J., and Sheaffer, Y., "Turbulent--Wake Calculations
with an Eddy-Viscosity Model", AIAA J., 10 (1972), 216.

79. Burggraf, 0. R., "Comparative Study of lurbulence Models for Boundary
Layers and Wakes", ARL-74-31, 1974.

80. Bradshaw, P., Dean, R., and McEligot, D., "Calculation of Interacting
Turbulent Shear Layers: Duct Flow", Trans. ASME, Series I: J.
Fluids Eng., 95 (1973), 214.

81. Varga, R., Matrix Iterative Analysis, Prentice-Hall, New Jersey, 1962.

82. Ghia, U., Hodge, J., and Hankey, W., "An Optimization Study for

Generating Surface-Oriented Coordinates for Arbitrary Bodies in
High-Re Flow", AFFDL-TR-77-117, 1977.

83. Roache, P., Computational Fluid Mechanics, Hermosa Publishers, NMI, 1976.

84. Unpublished Experimental Data on NACA 0012 Airfoil Section, Air Force

F. J. Seiler Research Laboratory.

85. Gault, D., "An Experimental Investigation of Regions of Separated
Laminar Flow", NACA-TN-3505, 1955.

86. Gaster, M., "The Structure and Behavior of Laminar Separation Bubbles",
ARC-R/M-3595, 1969.

87. Hoad, D., Young, W., and Meyers, J., "Velocity Measurements about a
NACA 0012 Airfoil with a Laser Velocimeter", NASA Langley Rept, 1978.

88. Arena, A. and Mueller, T., "Laminar Separation, Transition, and
Turbulent Reattachment near the Leading Edge of Airfoils", AI.A J.,
18 (1980), 747.

89. Gregory, N. and O'Reilly, C., "Low-Speed Aerodynamic Characteristics
of NACA 0012 Airfoil Section, Including the Effects of Upper-Surface
Roughness Simulating Hoar Frost", ARC-R/M-3726, 1973.

90. Wallis, R., "Boundary Layer Transition at the Leading Edge of Thin
Wings and its Effect on General Nose Separation", ICAS 2nd Congress,
Zurich, 1960.

91. Curie, N. and Skan, S., "Approximate Methods for Predicting Separa-
tion Properties of Laminar Boundary Layers", Aero. Quarterly, 8
(1957), 257.

92. Owen, P. and Klanfer, L., "On the Laminar Boundary Layer Separation
from the Leading Edge of a Thin Aerofoil", RAE Rept 2508, 1953.

93. Crabtree, L., "The Formation of Regions of Separated Flow on Wing
Surfaces", ARC-R/M-3122, 1957.

94. Crabtree, L., "Prediction of Transition in the Boundary Layer on an
Aerofoil", J. Royal Aerc. Soc., 62 (1958), 525.

91



95. Roberts, W., "Calculation of Laminar Separation Bubbles and Their
Effect on Airfoil Performance", AIAA J. 18 (1980), 25.

96. Coles, D. and Wadcock, A., "A Flying-Hot-Wire Study of Two-Dimen-
sional Mean Flow Past a NACA 4412 Airfoil at Maximum Lift", AIAA
Paper 78-1196, 1978.

97. Pope, A, and Harper, J., Low Speed Wind Tunnel Testing, John Wiley
and Sons, NY, 1q66.

98. Waskiewicz, J., Shang, J. and Hankey, W., "Numerical Simulation of
Near Wakes Utilizing a Relaxation Turbulence Model", AIAA Paper
79-148, 1979.

99. Hasen, G., "Navier-Stokes Solutions for an Axisymmetric Nozzle with
a Thick Base Annulus in Supersonic Flow", Ph D Dissertation, Air
Force Institute of Technology, to be published.

100. Brandt, A., "Multi-Level Adaptive Computations in Fluid D)vnamics",

AIAA Paper 79-1455, 1979.

101. Klunker, E. B., "Contribution to Methods for Calculating the Flow

About Thin Lifting Wings at Transonic Speeds - Analytic Expressions
for the Far Field", NASA-TN-D-6530, 1971.

$5

, .. .. ...... .n II" -



(X, Y) PHYSICAL PLA,E TRANSFORMED PLANE

FlR'.E 1 PHYSICAL NU TP D PLAIS

t 93



TUBLNYONAYLYRINRRGO
TURBULEN4T BOUN4DARY LAYER INNER REGION

V..U .. ._ ...._

LAMINAR BOU14DARY LAYER NEAR WAKE

TURBULENT FAR WAKE

FIGURE 2 FEG194S OF TURBULEN~T FLOW

x/C

F~IRR 3 Pornc oF 79A$ BIY-FITUE GRID (FIRST 30 C(XTAN I LINES)

94



0.0

-0.7 -. 5 -025 0.00 0.25 0.8 0:75

X/C

0.25-

-0.79 -09 -200 0.25 0.0 0.75

x/C

F1CdJIc 5 TE FowV sTVAEP( 0Oftff~JU 7,5*)



x/C

F1IWW 6 TMPJ F1GW ST~fAl*1 cWITOJ1 (o, 9,5)

O.Wo

025

OAiO



0.4 -

- -

- -=

Ga~CL 0A _

K/c

NOR 9 8E FI FM FLDIYLD D 7.5)

097



0.4- -

- -

0.- -

-QL- -

-OA- -2 -

x/c

FIJ 1 P FL VELITY FIELD (0(= 115



0.8

0.4-

U-

-00.1

-Oh -04L 48 1

0..

CO

+- 0.1

044

-La -a -(6 GD 0. O LZ
K/c

F1lJK 13 FLDA R PIWSRKF C{OJ 0 7.5*)

99



-0.1

04

0.0

--Q4 - + .1

-12 -i.8 -0.4 0. 4 0.8 12

X/C

FIGUJf 14 ? Eff FO PIWSSUIE MIff(XJF (o, 9S5*)

0,4 0 .

-a.4 .0.

_L2. -as

x/C
FIWUF 15 !'EMJ FO PWWW~f CONTO~jF (c 1.5

bk 0



3.5

Z56 - PJSENT SOLUT ION
- -!Ww'ISCID SOLUTION

p0 DEBIMYTAL DATA (84;

-1.0

-o.5

-10

Z5- -IIMVSND SOLTIN

2.0 -0 DPMRI MAL DATA (84)

L.5

06101



P15

2.-PRESENT SOLUTION

- -INJVISCID SOLUTON

20 . 0 E)FERIMENTAL DTA (84)

oo P-ETSOU

0.0 .............. ...

-O

-. 0

-053 -0W -02 -0.1 00 u e 0. OA a

X/C

F1IR 19 SUFC PA P UK CDFTICIENS 9~ 1.5)

3Z102



1060-

X/C - 0.32 0. 0.19 0.42ILO -11
P-SENT SOLUTION

7.0 0 rOmFRSR1 ' I ) TA
(Ws-r)84)_ 1

AXIS OFFSEUU/U,,-0,3

-. 401)

3.0

Io li

5aa

-0.1 0.1 0.3 0.15 0.7 0.9l LI 1_.3 11 L7 1.9 2.1 2
UI/U,.

FIGUJF 20 tIEAN FLOW VEOCITY VESU SUIfACE NDIAL DISTACE iO II}SOALIZEl BY
fltIU)lfARY' LAYER ThICQ(SS AT (C}OfU LOATIONS CON UPER SU AC
( = 5,)

X/C =- 0.3? 0. 0.19 04 2

4,.0-

a - PRESENT SOLUTION

S 4.0- 0, 0: EXERIMENTAL DATA
(TWO SETS) (84)

AXIS OFFSET L.U/LU = 0.5

Lo - 0

F I GRE 20 WrA FOW VElC I TY VORSU SURF:ACE UA D ISTNCE NOIIriS k~AIZED BY
CUMBLIARY LAYER THICNESS AT GM LOCATIOIC ON UPPER SURFACE

(, = ,5")

703

wl

-0. 0.4 0.32 0. 1 9 .422

C-t~1 PRESENT S LUTIO N WESATO LCTctS 1R *E
AXIS OFSE 7..) 0.

100



4A0

x/c - 0.32 0. 0.19 0.42

P6jESENT SOLUTION 4
o JM*GR p4TA DATA

Axis oIFSETh~u/.-O. 6

!31 1 0.4 0. . 9

La a

U/Ua.

FIGJI 22 "1~ FLOW VELOCITY VEIWJ SUfAE !UIO L DISTAM NIMIOALIZED BY
MRMf~ B)IL)ARY~ LAYER THICMESS AT OMF. LOCATIM1 ON MUfE SL*AC

(= 9,50)

4.0

30X/C 0.32 0. 0.19 0.47

-- PRESENT SOLUTION I
o.0EXPERIMENTAL DATA

(TWO SETS) (84)
.3 o - AXIS OFFSET -'U/U 0.6

1.0 0 0

UU

104

L0.0



0.42-1 PRESENT SOLUTION

0.0 EXPERIMENTAL DATA
(TWO SETS) (84)

AXIS OFFSET :1c =0.4

.0614 -0

00

X/C 0.58 0.79 1.54

0.2 064 &B im 1.0 12 1.4 A20

FIGHf 214 WKI "'P FLOW VEI-OCITY PRFILES AT Q.H LOCATINS WITH
ORIGIN ON C~lff I (a 5*)

0.56

0.462 -- PRESENT SOLU7IOr.
0,0 EXPERIMENTAL DATAo

(TWO SETS (64)
AXIS OFFSET :.L/uJ 0.5

0280

0C

0=0

X/' 0.58 0.79 1.54

0.0 0.3 Oha 0. L 1.5 1* L
U/u.

FIGURE 25 I'AJ K N FLW VELOCITY PROFILES AT GOM~ LCATIONS WITH
ORIGIN ON Ql)DLINE (o 75')



0&42 -- PRESENT SOLUTIO0N
0,13 EXPERIMEI.TAL DATA

(TWO SETS) (84,
AXIS OFFSET '.U/L 0.5

CO 0

0
0w 0

XC O. 5, 0.79 1.54

-0.1 041 0. i.5 i7 6AS ii i3 IL L? LB 3.
U/Un

FlaR 26 WAK~ "'EN FLO'JWL ff Y PROFILES AT Q(IJ LOCATIN WITH
ORIGIN ON C)OMDLIN 0~ 9.5')

0.42- -- PRE SEN- Sol 7 '1 0'
0,0EJFEW; ir,TAk JA-A

(T WC SE'S; 4'
AXIS OrrSELK .

0290

0,14-.14

00

-0.4D

-a 00 is015

-w. &I1 0.3 i6 i7 08 1.1 i3 LB L7 LB 3ii
U/U.

FI CUE 2 7 WAK " FLOW CffI TY PROFI LES AT CIM WDCAT ICNS W ITH
ORIGIN OC~ORDlLIN[ 0 = 1.5')



+VALLES

CON'&J1 RAY ' L 0 t
1NC REG P IN- ocC

-08 403 03 08 08
K/C

F I GRv 2 8 PY-Mff SrESs U, V CxiycxD 5,

0.80

025m

C0N'0cp RANGE - 0.01 to *0.01
INCREMEN' 0 .002

-W -03 083

K/c
FIRMf 29 WflMLD STWSS ON' QCtOM 0~ 7.5')

107



-VALUES

CONTOUR RANGE: - 0.01 to + 0.01
INCREMENT: 0.002

x/C
F1(3J 30 WYf1YJU STTESS Piv COHT(JJI (0 9.5')

0.00

-0.25-VLE

CONTOUk RANGE: - 0.01 to + 0.01

INCREMENPT: 0.00?

x/C
FIGRK 31 "EMOI) STFSS UN' 001frJIOU c 1i,5*)

4



(uv)

Figure 11. Contour plate of double correlations <u'u>/(q f?.
cuv'/J rfy-and < ''/1qrt).Contour interral 0.01d%, 0.005~.

FIGUN 32 DMRIiEWAL FLEZ STOS U'V'IiffUJF FOR WJAA 4412 WFiOIL
(a IT11 AND ft = 1.5 x 0C), REF, 96

as-

0.1-

INVISCIL SOP SOLU'ION (UPPER AN[. LOWEP SURFACE)
--THEODOPSEP. TRANSFORMATION SOLUTIO)N '67)

0 EXPERIMEN7AL DATA FOP UPPER SLURACE (84'
0EXPERIMENTAL DATA FOP LOWER SURFACE (84,

-5 -4 -wJ -02 - fta 60 01 02 0.3 0i4 0.5
x/C

FIGf 33 WJfCI "E PfSUK COEFIC19NT CWARNG MIIRI
IN/ISCID TfHIM WITH DGMJIPNAL DATA AT 0



0

Q.8

0.7-

OL3 A PESEN SOLTI0

0. 4

am3 A PRSN SREENUTION!O

0A5 [3EEXPERIMETTLLDDTTA (6'

0.14

0.06-

0.074 4 5 ma 0 O
CL£

D.OSCU 35 PREEN SOLUTIEJI



OUTER NORMAL GENERAL CONTOUR S

/- -

x /. n

/x

CROSS-SECTION AREA A

FIGURE 36 CTOUR INTEGRATION Cf-H-TRY FOR TWO-DI XI0AL FLOW



Q0

0

-4.0 1-.

ot

00
A

* U VELOCITY
- 0 FIELD PRESS.-E

* SURFACE PRESSR._

e U VELOCITY (PRESSURES FROZEN)

-7.0

0 5 10 15 20 4 3
NUMBER OF ITERATIONS

FIGUR 31 r XI W U ERROR OF SO SOUJTIOr FOR U, P, AN Pb VW
f.JER OF ITERATIS WITH t 0. ANoT D S'

•o A
0

-a DgA
-30

O U VELOCITY
OFIELD PRESSIPE!
/ SURFACE PRESSURE
'* U VELOCITY (PRESSURES FROZEN )

NUMBER OF ITERATIONS
FIGURE 3 8 Irl* FRfWJR OF SOR SOLUTICI FOR U, P, Pb VF.SU

tileR CF ITEIRATIONS WITH P.t = 0,0m1 = g



0.0-

0

SOLUTION DIVERGED PRIOR
TO 10 ITERATIONS

-1.0

00

-3,0

o L VELOCITy
C FIEL? PRESS'IRE

SUFACE PRESSLRE
UVELOCITY (PRESSURES FROZE!,;

--4.0m
0 2 4 6810

NUMBER OF ITERATONS

FIWiRE 39 Wl lERRO O U IN O ,P I bVF

OWBE oF ITEATIONS WITH 0.00OCI5 AND 8'

0O.6

..x........./..c.....
............................... C ~ = I 1 5

.... .. . ........ ... ..... ....



APPENDIX

GRID TRANSFORMA&TION RELATIONSHIPS

Several of the definitions and coordinate transformation relations

in the transforme, plane are summarized below. The notation used b

Thames (44) and Hodge (53) is retained. The physical plane is tlc (,, "-

coordinate system and the computational plane is the (, ) coordinate

system. The following function definitions are used:

f(x, y, t) - a twice differentiable scalar function.

F(x, t) i Fl(x, y, t) + j F,(x, v t) a twice differntia" Kr

vector function where i and j are Cartesian unit vectors.

Transformation Definitions

- x 2 * 
(A. )

0 = x 'Y' v t+v (+.VV

P, = (x - 2, y + "v) (A. 5)

J = x - x V :A.

- (YP - x p2)/J (.7,

7 = x D, y,:),)/J ;.

Derivatives of Scalar Functions in Transforned Piano

f = f/-x (y f - S/J A
ix

f f/,y (x - x f I '.1 A. .
y

f f/ t (f/t) , for fixed coordinates (A.lli

4

--- " "~~~~~1 " ... .. 
' "



Veto_ Oeatrsi the Transformed Plane

Gradient:

f (f - i + ( i* -f f j/J (A.12)

Divergence:

"•F~ = ) (F1 ) - <"9(l  + :,'. ,JF - :.', ) :,] (A.13)

Curl:

x F = k(, (F) - >.(F ) - x (F ) + (F.) - (A..1 )

Laplac ian:

= ( f 2'ff + )/J + / + (:/J-) (A.15)

Unit Normal and Tangent Vectors in Physical Plane

Normal to line:

n + / - = (-y .i + : (A.I 6 )

Normal to t line:

nO - = (v. - x j)/i-- (A.l7)

Tangent to ' line (increasing 2 direction):

(r~) _ ('-) x 1 7
t n k = (x +y)/- (A.l)

Tangent to F line (increasing direction):

_ n x k = (x i + )/,(A.)

Integrals in the Transformed Plane

Area Integral:

JRf(x, y) dx d v = * f(x, ) V ')) J d i] ( 1 \On)

where R is the region R mapped into the (7, r) plane.
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Vector Line Integral:
T nax

s rTnp)

where contour s is an, constant T- line in the physical plane, s is arclengt-,

along s,, and n p is the value of for the chosen contour s'.
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APPENDIX B

FINITE DIFFERENCE APPROXIMATIONS

This appendix presents the finite difference approximations that are

used in this investigation. The differences are formulated using a func-

tion f(:, ".) in the computational or transformed plane. The "f: and

spacings are assumed constant with value unity. The truncation error term

is given in derivative form assuming ' and .'- are equal. The apprc:.>:'a-

tions are second order accurate unless otherwise specified. Tir-. dif-

ferences are expressed by It. The superscript n denotes the ntI tine

interval and is understood when omitted. The differences are given for a

(, r,) point location denoted by subscripts (i, j) and are understood when

omitted. Space derivatives with respect to only 1! are presented because

the corresponding E derivatives are identical With sLascripts (i, j) reversed.

First time derivative, backward difference, first order:

ft = (fin _ fn-l )/t - It f tt/2 + ... (B.1)

First derivative, backward difference, first order:

f = (f 'j  
- j-1 - f-/2 + " 2

First derivative, central difference:

f = (fj+ - fj-)/2 - f T + . . (B.3)

First derivative, forward difference:

fr I =  (-fj+2 +  4fj~ - 3f.)j - fr,, 3 + .. (B.4)

First derivative, backward difference:

= (fj 2 - 4f._ 1 + 3f.) + f /3 + (B.5)

J117
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Second derivative, central difference:

f ' = (fj+l - 2f. + f j_) - f :T r,,/12 + (B.6)

Second derivative, forward difference:

f = (-f + 4f - 5fj+ I + 2f.) + llf r'/12 + (B.7)
T " j+3 j+2 j+

Second derivative, backward difference:

f r = (fj-3 - 4fj-2 + 5f j- - 2f.) - lf /12 + (B.8)

Cross derivative, central difference:

f Fi = (f i+l, j+l f fi+l, j-1 + f i-l, i - f i-l, j+l ) / 4

- (f + f )/24 + (B.9)

Cross derivative, central in and forward in r differences:

f = 3(f i+1 - f i-I) + 4(fi+l, j+l - fi-l, j+l)

- (f j+2 - i j+2 ) / + (f + fi ,_)/6 + " (B.1O)

Cross derivative, central in . and backward in r differences:

f = '3(fi+l - fi) - 4(fi+l, j-1 - fi-l, j-)

+ (fi+l, j-2 f i-1, j-2 )'/4- (f , + f r)/6 + (B.11)
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APPENDIX C

GRID MODIFICATION FOR WAKE RESOLUTION

This appendix describes the technique that is used to insert addi-

tional grid lines in the region of the airfoil wake. The body-fitted coor-

dinate grid system becomes coarse at distances far from the body. The

coarse grid may reduce the resolution of the velocity defect in the viscous

far wake region. In order to increase wake resolution, eight additional

lines are placed downstream of the airfoil with body points on the rounded

trailing edge. The original numerically generated grid has 71 r and 44

lines. Linear interpolation between adjoining [ lines of the form; x (I,J)p

= Ix(I-l, J) + x(l, J)}/2 is used to locate a line between lines I 1

and I = 2, I = 2 and I = 3, I = 69 and I = 70, and I = 70 and I = 71. The

procedure is repeated using the new lines as well except only one additional

line is located below the I = 1 cut. In this way the fine grid spacing has

an asymmetry for better wake resolution at angle of attack. The final 79

by 44 grid is shown in Figure 3. Table C.I gives the numbered I index

(r line) designation for the grid systems in the wake region.
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TABLE C. I

I Index ( Line) Designation for Grid Systems in akv.

71 x 44 System 75 x 44 Syste- 79 x 44 Svste.

69 71 72

773I
- - 74

70 73 75

74 77

- 78 l

71, 1 75, 79, 1

2 3

2 3 /

4 5

3 5 6

1 2o~



APPENDIX D

CONTOUR INTEGRAL METHOD FOR DETERMINING BODY FORCE COEFFICIENTS

The determination of the resultant force that a flow field exerts on

a body usually involves the calculation of surface pressure and viscous

stresses and the summation of these forces over the body surface. An

alternate approach is to apply a control volume analysis to a region

enclosing the body. In the foregoing discussion, a control volume analysis

for a body in a two dimensional flow is presented.

Consider a general body immersed in a flow field with surface

Define a fixed control volume V with outer surface C and inner surface B"

Conservation of linear momentum for the fluid in V is expressed bV the

Cauchy Integral Equation of Motion

D : v d% f b dV + n . T d - (D.1)

V V

where is the density, v velocity field, b body force per unit mass, n

unit outwaro surface normal vector, T traction stress, and u is the total

surface B + " Apply the Reynolds Transport Theorem to the material
B ~

derivative ter,. and the Divergence Theorem to the surface integral and obtain

from Equation D.1 for the ith Cartesian vector component

(, v.) dV + J ,_(. v. - T )dV 0 (D .2)f -1 j J1

V V

Apply the Divergence Theorem to the second volume integral and express the

resulting surface integral as separate integrals over -B and to obtdin
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V- (pv i ) dV + n ' v. - T. ) dc + n v - T. )d
V aB 

r

=o (D.3)

Now, on the solid non-porous body surface cB, n. v. = 0. The integral
B 3]

of the resultant traction force over C is the net force exerted b. the
B

body on the control volume fluid. Therefore, the force F exerted bv the

fluid on the body is given by

F. n.T.. dc (D.)

cB

Substitute Equation D.4 into D.3 and use the above surface condition to K

obtain a general expression for the force exerted by the fluid on the body.

F.=- - v.dV + njTj - Cv.v.) d: (D.5)I f i "" i j3i
T11

V

Now consider the case of two-dimensional flow in the x-y plane. Then

Equation D.5 becomes the following expression for the force per length of

span f

f= - 7- . dA + n(T. - v v.) ds (P.6,

A s

where A is the cross sectional area of the control volume and s is tht outer

perimeter of A as shown in Figure 36.

Substitute for the traction stress I = -p .. + ".. in Equat i -I I,.(,

and obtain

f = njp(-pji + j - v.v.ds - f \' dA (i.7)

s A

rI



where p is the pressure, is the laminar viscous strcss a-l.'

is the Kronecker Delta Function. !,Nxt express the i low \'aria t - 11

terms of turbulent mean and fluctuating variibies, assume incompref ,ic ic

flow, and Reynolds average Equation P.7 to obtain

n -p + - (wv. + \..' d.1 i3 j 15

f -d\

The tern -\J v. is the turbulent Reynolds stress . 1 t ,1 t< Y'r--

be defined as 'ji =  i +  Tlhen Equation F' .]Jt i"

f. =fnj '-p. + - -,Vv. us - -- . v.5.' >.,
fni j i +''I j i is7 t l

s
A

Introduce the following nondimensional variables in Equation P.0

pP- V.x
p v. and t = -u. vi * 7--i 1.[ I

S LL

=j- wre " is the fiees tiear. VL'loity Xnd i a r I:,

length in the x direction. Also, d-fine the forcL cOfi i ik'nt

and obtain from Equation 1.Q

f f n n P cis
- = S ji - 'ji - v's is - f ,

where all variables art. understood to be me.an diMtnsione.-' V\aria '

the turbulent eddy viscosity concept is used wlrc

Iji

and define Re - which transforms Equat ion P. 10 t,, th L in,
t +-

Cf 2 f n + (.L' V.j+.v'- jv NiV jds 2 -. : f -I,1~.- . . + ". - . . d - - v ' ' s i Re' ( j j i 1 ] t i "
1 t 

A

Expand Euation 0.11 into x and v component equations

t "i2



r V
~2 J -p+ [2n 1)+n u + uv, (Is

I Re 1x "V.
x ' t

2 JudA (D. 12a)

C' 2 f -n.,pp+- [n1  2 + -I") -
2 n2  (uvm 1 + v* n") dJs

t ,fv (D. 12L

A

W ,'c.re 11 and n, are thL- x: and y components of the unit outward norT7u,,

vc Lr r, for the~ outer boundar'. s of area A. Equations (.2 m >

are exprv-;sion- for tht, x and v force cocffic itnts exurted. ii twgj-

dimension2i incompressible~ turbulent flow on an arbitrary o-i>min

body: whLerv~ pathi s, enc loses the body anL i~n eddy v. scos it: m~ thod i n,.

to model turbulence.

Lift and drag; coefficients arc thien obtained from-, the force. c,,c<' ic it-nt

as foLAL"I"s WhJrk- is the georietric angl, Of attac..

L coy- C sin

C C si: + C cs.

I) I



APPEN 'Pl: F

TIME INCREMET NFIJENCF (NSOR CON fRPENC

Implicit SuR methods, have been shuwn by I incar stabil ity anal' -Se>

to be uncond it ional1lv stable. liowcvt r , conve~rgence has require,! a S7.I I

t ime step size in this investi~at ion and ve1ewhcrc. -!"th following ana>l-

sis indicates the relatijonship between theu t ime step size and converzten(L

Consider thc syste:?i of d if fvrenct qaLPu to 1'e writ ten- ,.' t1,

followin.c maitrix fort.:

where t% is the coefficient matrix, t' iS th c \'Vto 0r of LIn'known ;)r i i it ie

variales at time step n with u, v, p ,groupcd togcther for eaL'I (i ,,

point location, and b is a vector ol 'C OnStant s" For example. tli.

ponent of the momentum equation, Equation 92, at the (.,j) point is

Q(S) n-l +) (

+ !'c ( I(l~-UI ) + V C -4 LI )+ ic.

*) + V*( 4 u -l +~ I2 + ALFA 0n + u.1 -1

SJI i Jvi RET i+1

+ G AYA u~ i j ~ ' i + BETA (u + -~ U i+l J-1 + 1i-1i -

11 -l ~l u i D1l 0

where all coefficients are evaluated at point (i,j) and pri:!:itiveL variab1,ILs

are at time stup n unless given otherwise, and Q~ is givin Ys

Q = 1 + 3 '.t (I -VC, + UV + VV ) + A- L ALA + (A'iA

t
Rearrani!e Equ.-ition i7.]' and obtain

1- V +C~ B E7' + i]j- + ~ nj+ !4~ ''<

12)



+ ALFA ._ + YETA p -_ BETA

RE-j i-U -IE U -WVRET i-ij+l i J C2

+RE u. + 4 VE u. +,\'V, u -YXI _ i s
JE - cl i Jvl a j-1 -t ij

+ .-- BETAI + ALFAu - Y EI p.
RET I i j+1 + i j+1 RET "i+1 j-i REP i+1 j 1+1 ~j

BETA ~n-i (-)(.

+ _ - -jjA U + U. -)D(.3
RET U*+4 1 j4-l :.t '2

A similar y component of momentum equation is obtained if u is replaced H

v; YETA 1), PIT-A; and YXIl by - Xxi"11

The finite difference pressure Equation 94 beco)- e

- V + BETA p. *-Ij- +4 1'V p \I1 i + A L 1Api-

B ET.- p ii j+ - ~ Vv- +~ pn P jl+4 VV p.i V - Bp ..

+ PAW BETA- p ~ ~ + AURA, p. + BEF.TA ) F, .:-R;

n-4,

where B=2 (AEEA+G:VMA) + 3(I'V + VV ) and RHS -. ~ + ,(WX) +-'(VXP (1 )+p (%

Convergence Iieorcm-; (Si) for systems of linear equations with, constjxt

coef fic ients show that a necessary- and suffI-ic ient condit ion for e:r<n

requires; that the coefficient matrixi be diagonall's do,.nant. If tl rtri

is applifed to the allove qusi -iineir syst em,, the follIowinli convxer.;cnc( critc'ria.,

inequa lityv E.6~ from the monen tumn equation and i ntrju illt': 1-1. rom t he p rt siirL

equat ion, are obtainedI:

5 ( T(? + VC -+ TWV% -+ VV ) + RE- AEEA -4 i''

3 Y0j+ '
+ R FTBEFTA + (YI+ EA P

or 3 'C: + VC + 1-V + VV + .%--

wichI becoTTeLS

P ( 4 W 4-1<+ W )+ ElA -4-P Y I



and

2(ALFA + GAXMA,) +4 BETA + 5 ( %" 4- VV)

2(,ALFA + GKL-\ ) + 3 (UV + VV,) (E.7)

or 4 BETA + 2 ('!V+ VV ) 0 (E. 8)

The converge-nce criteria, Equation E.6, provides a limit on t a. a

function of both the grid geometry and flow field solution. rigut hand

side of the inequality has its smallest magnitude near the trailing ed:jC,

and increases rapidly away from the airfoil. An order of magnitude analysis

of the grid coefficients and an examination of the computational solutions

indicate that diaponal dominance occurs if '.t < 0.0003 for points near te

trailing edg;, 't - 0.001 elsewhere near the body, and 't 1 I in tho far

field. The pressure equation convergence criteria, Equation E.S, lias no

dependence and is approximately satisfied only at points far from- t,

body where the left hand side approaches zero. These criteria can only

indicate a possible time step restriction since the system: of equations has

variable coefficients and lower order nonlinearities.

A numerical experiment was conducted to determine the time step effLct

on convergence. A computation for the flow over the NACA 0012 airfoil at

an angle of attack of eight degrees was used. The solution was advanced

one time step with the time step size and number of iterations per time

step varied. The solution converged for time steps of 0.0005 and 0.001 w .ile

diverging for a time step of 0.005. The relative maximum error magnitudes

for the u component of velocitv, surface pressure p,, and field pressur(<

p as functions of number of iterations arc show-n for each timt st (p in

Figures 37, 38, and 39. The relati vt error is defined as (f - f - 
f

The v component of velocity errors behave similarly to the u co:.pcnLe.t

Next, the pres-urt wa< held fixed and thlu convergtunce of thl vt oct v

was monitored (Figures 37, '18, and 3c). The rapid rate uf convtr ,nC", i:

4 1.'7



observed. The u and v velocity components were. also hlid f i':c in

turn to test convergence. In both cases, convergencoe was si.ilsr to

the general solution case, These numerical experiments indicate tnlt

the convergence of pressure is slow and that convergence is dependtnt

on time step sizes similar to those predicted by the simple anal':i

above.
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APPE;'"Q F

FAR FIELD BOUNDARY CONDITIO';S

Th. far fi ld boundary for a numerical solution must usually

be at a finite distance from the body of interest. iis con.straint

may pose difficulties if the only known far field boundary conditions

are those at infinity. This analysis uses complex variable methods

for incompressible potential flow and develops approximate far field

boundary conditions for use at a finite distance.

Consider a circular cylinder radius a and center at the criin, wit:

positive clockwise circulation I , in a uniform stream (velocity ,

at angle of attack -. This coordinate s'ste7. is identical wit. th,.

physical plane of the airfoil. The complex velocity is

where + ifrttrist

where the first term is the uniform strea-. contribution, the second

term is a doublet of strength 2-a:U , and the third term is a vortex of

strength 7.

Next, use the Kutta-,Joukowski Theorem 5 or lift and the definition

of the lift coefficient to obtain

= (1/2) CLU c (F.2)

where c is the airfoil chord.

Nondimensionalize Equation F.I velocities with the freestream velocity U

and lencths with the airfoil chord c and substitute Equation F.2 into F.1

and obtain

1:0

.. . .. . . .. ... . .. . ... . ... . ....... .. . ' . . . -'' i. -' ,... . a . . . .. .. ." .. .. " -r, .



W (Z) = e - + e 1.1 (F.
c 4

where W is the nondimensional complex velocity and is the nondimensional

complex variable Z = x + iy.

Airfoil transformations such as the Joukowski and Treffetz Trans-

formations transform a cylinder into an airfoil with a chord of four

radii. Thus, for a given chord c, choose the cylinder radius to be 1/4

ac which gives a scaling factor - = 1/4 in the doublet. Then the complex
c

velocity for the flow around the scaled cylinder becomes

e, C
-i1( )=e' 16 + i--- 4 (TA)

Expression F.4 can then be used to approximate the far field potential

flow over the airfoil of chord c with circulation '- in the same physical

plane.

Let the far field boundary be a circle of radius r where
if

Srf e , 0 2. Substitute for in Equation F.4 and obtain

i ) 2i- C L _-i, - e 1 if (F.5)' ( ) e 16r- r(

If

Combine the exponential terms in F.5 and use the fact that W u-iv,

where u and v are the x and y velocity components, to obtain
1 CL

uf ) cos - lt r cos (A - 23) + -r sin (F.6A
1 f

Vf sin X + sin ( - 2 ) - Cr cos (F.6b)
f16r f--r rf

In both Equations F.6, the first term is the freestream velocitv contribution,

the second term is the doublet contribution, and the third term is the

vortex contribution. As rf approaches infinity, the infinity freestrean

boundary conditions for u and v are recovered. Also, the doublet term:

is of higher order in i/r than the vorte:x term for the case of a liftinc

airfoil and may be d.



The far field pressure is obtained by applying Bernoulli's

equation for irrotational incompressible flow and using the nondimensional

fo'm for pressure. The result for the far field boundary is

Pf () = 1/2 l-(u f f )" (F. 7)Pff

The far field boundary conditions of Equations F.6 and F.7 modify the

infinity freestream conditions by incorporating effects on the flow of

body thickness and circulation at a large but finite distance from

the airfoil.

Transonic small disturbance theory for slender bodies and airfoils

has similar expressions for the far field conditions. Klunker (101) has

obtained an asymptotic solution applicable at large distances fro:. thin

airfoils. This form has been used as a numerical outer boundary condition.

For the limiting case of incompressible two-dimensional flow, the doublet

and vortex strengths are compared below with the general forms found in

Equation F.l.

The nondimensional velocity potential doublet in the far field

from Klunker becomes
C

d x-+ 2fF(s)ds (F.8)

where F(s) is the airfoil thickness function. The doublet st-ength is thu

2fF(s)ds. The NACA four digit airfoil thickness function (67) is
F(s) 0. (.2969 (s)- - .126c - .3516( + .2S43 -

0.2 c c C c

.1015 (s) ) (.9)
c

where c is the airfoil chord, f is the maximum thickness as a fraction

of chord and s is the chord distance, 0 < s ' c.

Substitute the thickness function Equation F.9 into the doublet strength

expression and obtain the following doublet strength from transonic small

disturbance theory:

= 0.685 fc (F.] )
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For the case of a NACA 0012 airfoil, D 0.0822c'. The corresponding

doublet strength in the simple potential flow model from Equation F.1 is 2,:
2 2

(-) or .397 2c . Klunker points out that the doublet may be neglected in

the far field for finite circulation flows because the vortex contribution1 12

is of order (- ) compared with an order (1) for the doublet.
rf rf

The vortex potential term of Klunker for the case of incompressible

two-dimensional flow is

sgn (y) + (tan (F.11)Cv 2-,

where 7 is the clockwise circulation, the inverse tangent function is

defined on the interval (- , and the angle within braces is defined

clockwise from the negative x axis. This potential function is identical

with the vortex function in Equation F.l where the clockwise strength s again

F and the angular orientation is the right hand polar coordinate K de, ed

counterclockwise from the positive x axis.

Thus the far field potential for each method differs only in the

thickness or doublet term. Furthermore, for flows with finite cir. ation

this difference is negligible because the vortex term dominates.
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APPENDIX G

NLIMA.RICAL INVISCID FLOW RESULTS

A numerical solution for the inviscid flow over the NACA 0012

airfoil is obtained for comparison with both the Naiver-Stokes computation

and the experimental data. The numerical algorithm, developed by Thames

(44), which solves Laplace's equation for the stream function in two-

dimensional flow is used. The method uses SOR iteration to solve the

system of equations written in terms of body-fitted coordinates. The

stream function value on the body can either be specified o computed ,

imposing a given circulation or a Kutta condition.

The stream function equation for two-dimensional flow is

+ ' =0 (C.]1)
xx yy

Rewrite Equation G.l in terms of the transformed variables in the

computational plane using expressions in Appendix A to obtain

The boundary condition for the stream function on the outer boundar;, w .1c,

is a radius of ten chords, is the freestream value

f = yf cos t. - xf sin 1L. .

where (xf, yf) are coordinates on the outer computational boundar' :

CL is the angle of attack. Hodge and Ghia (82) have shon N' aln

inviscid analysis that this boundary condition induces an error in lift

of less than 1% for angles of attack less than 10'. The boundiarv:

condition on the body is

i b = constant ((:. 31

The constant can be specified or determined by impcsing a given circula-

tion or a Kutta condition. The Kutta condition which matches the up;er

1 33



and lower trailing edge surface velocities by extrapolation is sel.ct-

ed. The details for each option are given by Thames (4-.

The derivatives in the transfcrmed Equation C;.2 are approxim.ated

by central difference formulas found in Appendix B. The resulting

system of equations is solved by SOR as described by 71a-ct, (i' . S.).:-

tions are obtained for 0', 5 , 7.50 9 .5' and 11.5 ' for t!t XA(.' , .

airfoil section. The body surface pressure coefficients can he calculated

from the stream function solution as follows. The body pressure coefficic:-t

is defined as

C = 1 - (u- + v') ((.4)
p

where at a location on the body u and v are the x and y components of 'h

flow velocity nondimensionalized by the freestreain velocity. IsI- til

definition of the stream function to obtain

C = 1 - (, )2 + (x) (;.5)
p y Ix

Then rewrite the Equation 0.5 in terms of the transformed variables and

note that . = 0 on the body to give

C = 1 .)(.F

p -

where all quantities are evaluated on the body surface. The body proe.ur,

coefficients, calculated using Equation G.6 with second order one-sided

differences, are plotted in Figures 16, 17, 18, 19, and 33. A tvpic il

streamline plot for a = 11.50 is shown in Figure 40. The numerical in-

viscid solution is also compared with an analytical solution (U7) wIi2.

uses Theodorsen's (12) method. The excellent agreement iS seen in

Figure 40 where both solutions are plotted.
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APPENDIX H

EXPERIMENTAL DATA

This appendix presents the unpublished data which have been obtained

experimentally at the Air Force Frank J. Seller Research Laboratory, US,F

Academy, Colorado, by laboratory personnel and used in this work.

Airfoil upper and lower surface mean pressure coefficient measure-

ments for nominal attack angles of 0', 50, 8', I0', and 120 at a chord

Reynolds number of 170,000 are given in Table H.1. The pressure coefficient

is defined a the static pressure, relative to freestream static pressurc,

nondimensionalized by the freestream dynamic pressure as follows: C
p

- p.)/. ' . The two sets of hot wire anemometrv velocity field data

near the upper and lower airfoil surfaces on designated paths are presented

in Table 0.11. The velocity field and Reynolds stress u'v' data for the

near wake region are presented in Table H.111. The data have been non-

dimtensionalized by the measured freestream velocity. The spatial locations

in the physical coordinate system for each path are given in Table H.IV

where location (0,0) is the airfoil center and the x axis lies along the

airfoil chord.

The spatial measurement locations correspond with computational grid

point locations on constant " lines or , lines in the physical plane. Tlie

experimental lead time necessitated the use of the original 71 : 44 Vrid

system. The I, J index notation designates, however, the point indexing

(:, ) in the final 79 x 44 grid described in Appendix C.
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